首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
We report the cloning and characterization of two new metallothionein (MT) genes (TrosMTT1 and TrosMTT2), isolated as cDNAs, from the ciliated protozoa Tetrahymena rostrata. The TrosMTT1 inferred protein has been identified as a CdMT and included into the 7a subfamily of Tetrahymena MTs, while TrosMTT2 has been identified as a CuMT (including it into 7b subfamily), due to its similarity to TpigMT-2 and its significant induction by copper. TrosMTT1 protein sequence reveals a remarkably regular and hierarchical modular organization, as it is known for other Tetrahymena CdMTs, showing a bi-modular structure. TrosMTT2 presents a structural organization based on CKCX(2-5)CKC repeats, like it occurs in other Tetrahymena CuMTs, indicating that an evolutionary history based on intra-gene duplications might be also possible. Both are also multi-stress-inducible genes because they are induced by other heavy metals and stressors, as it has been shown by quantitative real-time RT-PCR. It is the first time that the gene expression of a putative Tetrahymena CuMT is analyzed by quantitative PCR, confirming it as a CuMT. These two new Tetrahymena MTs complete, at present, the actual view of this protein superfamily, and corroborate the unique features of ciliate MTs. Furthermore, both, a comparative analysis of relative gene expression values obtained by quantitative RT-PCR on other Tetrahymena MT genes and an analysis of the different Tetrahymena MTs based on the different Cys clusters of these proteins are carried out, which show an update view of Tetrahymena MT gene family.  相似文献   

5.
The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.  相似文献   

6.
The buckwheat metallothionein-like (MT3) gene expression was studied throughout seed and leaf development, as well as under the influence of different external stimuli. MT3 mRNAs were detected from the early stage of seed development to the end of maturation, reaching the highest level during the mid-maturation stage. High MT3 mRNA level was noticed for both green and senescent leaves. The influence of raising Cu ion concentrations on MT3 gene expression was studied only in leaves, while the effect of Zn ions was analyzed through seed development as well. It was found that Cu and Zn ions had stimulatory effects on expression in leaves. MT3 expression was significantly enhanced in the early stage of seed development in response to Zn ions, while after this stage, influence of Zn ions was not detected. After H2O2/NaCl treatment, MT3 mRNA level was decreased in green leaves, contrary to senescent leaves where expression levels remained unchanged. H2O2 treatment caused the increase of MT3 mRNA levels in the mid-maturation stage of seed development. NaCl had no effect on expression levels in seeds. According to obtained results, proposed functions in different plant organs regarding oxidative stress and metal homeostasis are discussed.  相似文献   

7.
8.
9.
10.
Analysis of type 1 metallothionein cDNAs in Vicia faba   总被引:7,自引:0,他引:7  
  相似文献   

11.
12.
The mitochondrial cytochrome c oxidase 1 (CO1) genes of two isolates of each of the seven mating types of Tetrahymena thermophila were sequenced and found to differ by < 1% in nucleotide sequence and to be identical by putative protein sequence. As this gene was highly conserved in this species, the CO1 gene sequence was determined for four pairs of Tetrahymena species identical in their small subunit rRNA gene sequences. The following pairs of species showed from 1% to 12% divergence at the nucleotide level, enabling discrimination of all these species: (1) Tetrahymena pyriformis strain T and Tetrahymena setosa strain HZ-1; (2) Tetrahymena canadensis strain UM1215 and Tetrahymena rostrata strain ID-3; (3) Tetrahymena pigmentosa strain UM1285 and Tetrahymena hyperangularis strain EN112; and (4) Tetrahymena tropicalis strain TC-105 and Tetrahymena mobilis. However, because of the synonymous nature of the majority of substitutions, the pairs of species were identical based on the putative protein sequence.  相似文献   

13.
Hyperglycemia, a major metabolic disturbance present in diabetes, promotes oxidative stress. Activation of antioxidant defense is an important mechanism to prevent cell damage. Levels of heavy metals and their binding proteins can contribute to oxidative stress. Antiradical capacity and levels of metallothionein (MT), metals (zinc and copper), and selected antioxidants (bilirubin, cysteine, and glutathione) were determined in 70 type 2 diabetes mellitus (T2DM) subjects and 80 healthy subjects of Caucasian origin. Single nucleotide polymorphism (rs28366003) in MT gene was detected. Antiradical capacity, conjugated bilirubin, and copper were significantly increased in diabetics, whereas MT and glutathione were decreased. Genotype AA of rs28366003 was associated with higher zinc levels in the diabetic group. The studied parameters were not influenced by renal function. This is the first study comprehensively investigating differences in MT and metals relevant to oxidative stress in T2DM. Ascertained differences indicate increased oxidative stress in T2DM accompanied by abnormalities in non‐enzymatic antioxidant defense systems.  相似文献   

14.
Metallothioneins (MTs) are low-molecular-weight, cysteine-rich metal-binding proteins found in a wide variety of organisms including bacteria, fungi and all eukaryotic plant and animal species. MTs bind essential and non-essential heavy metals. In mammalian cells MT genes are highly inducible by many heavy metals including Zn, Cd, Hg, and Cu. Aquatic systems are contaminated by different pollutants, including metals, as a result of man's activities. Bivalve molluscs are known to accumulate high concentrations of heavy metals in their tissue and are widely used as bioindicators for pollution in marine and freshwater environments, with MTs frequently used as a valuable marker of metal contamination. We here describe the MT isoform gene expression patterns of marine and freshwater molluscs and fish species after Cd or Zn contamination. Contamination was carried out at a river site polluted by a zinc ore extraction plant or in the laboratory at low, environmentally relevant metal concentrations. A comparison for each species based on the accumulated MT protein levels often shows discrepancies between gene expression and protein level. In addition, several differences observed in the pattern of MT gene expression between mollusc and mammalian species enable us to discuss and challenge a model for the induction of MT gene expression.  相似文献   

15.
Chang Y  Feng LF  Xiong J  Miao W 《动物学研究》2011,32(5):476-484
多个金属硫蛋白基因异构型已在四膜虫中被鉴定,这些异构型可分为7a和7b两个亚家族。该文利用实时荧光定量PCR技术检测了嗜热四膜虫金属硫蛋白基因MTT2和MTT4在Hg、Cu、Cd、Zn、H2O2暴露下的表达水平,结果显示两者表达规律相似,均为:Cu暴露下上调最高(>200倍),Hg次之,Cd、Zn上调倍数不大,H2O2有下调趋势。此表达规律明显有别于7a亚家族,具有7b亚家族的表达特征。同种诱导物暴露下MTT4的上调表达幅度比MTT2高出数倍,结合生物信息学分析结果,推测可能与MTT2和MTT4上游调控元件(如AP-1、MRE等)的数量差异有关。基于MTT2和MTT4在结构和功能上的高度相似性,推测两者可能是经近期基因复制事件产生,并遵循基因剂量模型进化而来。  相似文献   

16.
Metallothionein (MT) is a strong antioxidant, due to a large number of thiol groups in the MT molecule and MT has been found in the nucleus. To investigate whether MT can directly protect DNA from damage induced by hydroxyl radical, the effects of MTs on DNA strand scission due to incubation with ferric ion-nitrilotriacetic acid and H2O2 (Fe3+ -NTA/H2O2) were studied. The Fe3+-NTA/H2O2 resulted in a higher rate of deoxyribose degradation, compared to incubation of Fe3+/H2O2, presumably mediated by the formation of hydroxyl radicals (*OH). This degradation was inhibited by either Zn-MT or Cd-MT, but not by Zn2+ or Cd2+ at similar concentrations. The Fe3+ -NTA/H2O2 resulted in a concentration dependent of increase in DNA strand scission. Damage to the sugar-phosphodiester chain was predominant over chemical modifications of the base moieties. Incubation with either Zn-MT or Cd-MT inhibited DNA damage by approximately 50%. Preincubation of MT with EDTA and N-ethylmaleimide, to alkylate sulfhydryl groups of MT, resulted in MT that was no longer able to inhibit DNA damage. These results indicates that MT can protect DNA from hydroxyl radical attack and that the cysteine thiol groups of MT may be involved in its nuclear antioxidant properties.  相似文献   

17.
Metallothioneins are small cysteine-rich proteins with strong binding capacity for heavy metals. In animals and fungi they are involved in cellular detoxification processes. Although genes for similar proteins exist in plants, less is known about the putative functions of their protein products. Here, we describe the characterisation of cDNAs specific for four genes (LEMT1, LEMT2, LEMT3 and LEMT4) encoding metallothionein-like proteins from tomato. Based on the characteristic cysteine pattern, the LEMT1, LEMT3 and LEMT4 gene products represent type 2 proteins. In contrast, the LEMT2 protein might establish a new structural pattern of metallothionein-like proteins not described before. Mapping experiments demonstrate that all four genes are localised at different genetic loci within the tomato genome. The members of the small gene family show a differential organ specific expression pattern. Expression of these genes is also influenced by heavy metals and by treatment with the thiol-oxidising drug diamide. We further describe the expression of the LEMT genes under different iron supply conditions both in tomato wild type as well as in the mutant chloronerva, which is defective in metal uptake regulation and exhibits a characteristic apparent iron deficiency syndrome.  相似文献   

18.
Metallothionein (MT) is a ubiquitous, metal-inducible protein with an important role in the homeostasis and in the detoxification of heavy metals. This work reports the cloning and sequencing of a MT gene encoding a MT isoform (MT20-IIIa) in the mussel Mytilus galloprovincialis Lam, a lamellibranch mollusc known to accumulate and to detoxify large amounts of metal. The MT gene, lacking the 5' promoter region, is 1865 bp long and has a tripartite structure consisting of three exons and two introns. The putative open reading frame (ORF) encodes a polypeptide of 72 amino acids, which corresponds to the MT-I class, type 2 family (http://www.unizh.ch/~mtpage/classif.html). The structure of the gene and the putative MT20-III protein have been compared with those of other species. The putative biological significance of the differences at the amino acid level among the different MTs is discussed.  相似文献   

19.
Metallothionein (MT) has two domains, α and β domain. α domain preferred to bind Cd2+and Hg2+. Mouse metallothionein mutant αα has been constructed and expressed in E.coli, which has the same stability as the nature one but has stronger affinity to heavy metals. To testify the result in vivo, αα mutant gene was cloned into plant expression vector pE3 under the CaMV 35S promoter. A transgenic tobacco was obtained by using leaf discs of tobacco (Nicotiana tabacum L. cv. NC89) to Agrobacterium-mediated ααgene transfer. Southern blotting analysis indicated that the αα mutant gene was indeed integrated into the tobacco genome; Western blot indicated that the αα mutant gene was expressed in transgenic tobacco. It was also demonstrated that the transgenic tobacco with αα mutant gene have a little higher tolerance to heavy metals than that with natural MT gene. Moreover, the transgenic tobacco can accumulate more Cd2+ in its roots than natural, so that, it can decrease the concentration of Cd2+ in its leaves.  相似文献   

20.
Mammalian metallothioneins (MT) have been reported to scavenge free radicals. There is no experimental evidence to show that fish MT has a similar property. In the present study cadmium-induced MT (Cd-MT) from the liver of an Indian freshwater fish Channa punctata Bloch was investigated for its free radical scavenging activity using three different in vitro assays. Exposure to cadmium chloride (0.2 mg/kg body weight; three doses on alternate days) resulted in a marked induction of Cd-MT in liver. Only a single isoform of Cd-MT was found to be induced. Molecular weight of Cd-MT was found to be 14 kDa as deduced by SDS-PAGE analysis. The purified Cd-MT effectively scavenged the following free radicals: superoxide radical (O2*-), 2,2'-azinobis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS*+) and 1,1-diphenyl-picrylhydrazyl radical (DPPH*). The radical scavenging effect was found to be concentration-dependent. Also, the purified MT exhibited an inhibitory effect on ferric nitrilotriacetate (Fe-NTA) induced oxidative DNA damage in vitro. The cysteine residues of MT are proposed to be the main candidate for its radical scavenging activity. Findings of the present study strongly suggest a free radical scavenging role for fish MT. Present study adds to the little existing knowledge about fish MT and its possible biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号