首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous work of others and ours has shown that corticotropin-releasing hormone (CRH) is a positive stimulus for thyroid and interrenal hormone secretion in amphibian larvae and that activation of CRH neurons may mediate environmental effects on the timing of metamorphosis. These studies have investigated CRH actions in anurans (frogs and toads), whereas there is currently no information regarding the actions of CRH on metamorphosis of urodeles (salamanders and newts). We tested the hypothesis that CRH can accelerate metamorphosis of tiger salamander (Ambystoma tigrinum) larvae. We injected tiger salamander larvae with ovine CRH (oCRH; 1 microg/day; i.p.) and monitored effects on metamorphosis by measuring the rate of gill resorption. oCRH-injected larvae completed metamorphosis earlier than saline-injected larvae. There was no significant difference between uninjected and saline-injected larvae. Mean time to reach 50% reduction in initial gill length was 6.9 days for oCRH-injected animals, 11.9 days for saline-injected animals, and 14.1 days for uninjected controls. At the conclusion of the experiment (day 15), all oCRH-injected animals had completed metamorphosis, whereas by day 15, only 50% of saline-injected animals and 33% of uninjected animals had metamorphosed. Our results show that exogenous oCRH can accelerate metamorphosis in urodele larvae as it does in anurans. These findings suggest that the neuroendocrine mechanisms controlling metamorphosis are evolutionarily conserved across amphibian taxa.  相似文献   

2.
One-hundred twelve amphibians, including 51 blue-spotted salamanders, Ambystoma laterale, 30 eastern American toads, Bufo americanus americanus, and 31 northern leopard frogs, Rana pipiens, were collected during April-October 1996 from Waukesha County, Wisconsin and examined for helminth parasites. The helminth compound community of this amphibian assemblage consisted of at least 10 species: 9 in American toads, 8 in leopard frogs, and 3 in blue-spotted salamanders. American toads shared 7 species with leopard frogs, and 2 species occurred in all 3 host species. Although there was a high degree of helminth species overlap among these sympatric amphibians, statistically significant differences were found among host species and percent of indirect or direct-life cycle parasites of amphibian species individual component communities (chi2 = 1,015, P < 0.001). American toads had a higher relative abundance of nematodes, 59%, than larval cestodes, 31%, and larval and adult trematodes, 10%, whereas leopard frogs had a higher relative abundance of larval cestodes, 71.3%, and larval and adult trematodes, 25.3%, than nematodes 3.4%. This is related to ecological differences in habitat and dietary preferences between these 2 anuran species. Helminth communities of blue-spotted salamanders were depauperate and were dominated by larval trematodes, 94%, and few nematodes, 6%. Low helminth species richness in this host species is related to this salamander's relatively small host body size, smaller gape size, lower vagility, and more fossorial habitat preference than the other 2 anuran species. Adult leopard frogs and toads had significantly higher mean helminth species richness than metamorphs, but there was no significant difference in mean helminth species richness among adult and metamorph blue-spotted salamanders. Considering adult helminths, the low species richness and low vagility of caudatans as compared with anurans suggest that local factors may be more important in structuring caudatan helminth communities of salamanders than of anuran hosts. Helminth species infecting salamanders may be more clumped in their geographic distribution as compared with anurans, and the role of other hosts and their parasites at the compound community level may be important in structuring helminth communities of salamanders.  相似文献   

3.
The innate immune response to bovine Babesia bovis infection in vivo has not previously been established. We used assays measuring phagocytosis and oxidative burst to investigate the immune response because they are indicative of the innate antimicrobial capacity of monocytes and neutrophils. Monocyte and neutrophil phagocytosis is thought to be non-specific in nature and so the phagocytosis of either opsonised Zymosan or Escherichia coli was used to indicate the non-specific phagocytic capacity of monocytes and neutrophils ex vivo. The kinetics of both phagocytic and oxidative burst activity in monocytes and neutrophils were followed twice weekly from pre-inoculation (day 0) through to 31 days after inoculation. Peripheral blood monocytes were found to display a pronounced oxidative burst, but a suppressed capacity to phagocytose during a primary infection. On the other hand, neutrophils exhibited an increased phagocytic capacity and reduced oxidative activity during a primary infection. These findings identified considerable antimicrobial activity evident in peripheral blood monocytes and neutrophils from cattle exposed to B. bovis as a primary exposure. This elevated antimicrobial activity was coincident with the time that parasite numbers peaked in the circulation and occurred prior to parasite clearance. These results suggest that peripheral blood monocytes and neutrophils are active mediators in the innate immune response to a primary B. bovis.  相似文献   

4.
Phagocytosis is an important immune function to quantify. This immune response may be modulated by exposure to biological response modifiers or by exposure to pollutants. A new technique for quantifying nonspecific phagocytosis of alveolar and peritoneal macrophages in the same animal has been developed that utilizes fluorescent polystyrene beads. When incorporated into inhalation studies, this technique can be used to determine whether the toxic effect of an inhaled pollutant is local (effect on alveolar macrophages), systemic (effect on peritoneal macrophages), or both local and systemic. This method results in a determination of both the level of phagocytosis (the percentage of phagocytic macrophages) and the macrophage specific activity (the number of beads phagocytized per macrophage). This method also allows a determination of adherence by quantifying the number of particles in contact with, but not phagocytized by, the macrophage. Macrophage preparations were incubated with fluorescent beads for 2 hr and cyto-centrifuged onto a glass slide. Fluorescent beads present on the slide or cell-associated but not ingested by phagocytosis were removed by immersing the slide containing the macrophage preparation in methylene chloride for 15-30 sec. Fluorescent beads ingested by phagocytosis were then easily quantified with a fluorescence microscope. This technique was used to assess the baseline levels of phagocytosis for rat alveolar and peritoneal macrophages from the same animal and the kinetics and level of enhanced phagocytosis for alveolar and peritoneal macrophages after injection with the interferon inducer polyinosinate-polycytidylate (poly(I):poly(C)). The kinetics of enhanced alveolar and peritoneal macrophage phagocytosis by poly(I):poly(C) were similar; however, stimulated phagocytic levels of peritoneal macrophages never reached the phagocytic activity observed for the resident, highly phagocytic alveolar macrophages. This elevated phagocytic activity is most likely due to interferon stimulated by particulate matter in the large volume of air processed by the lungs and is important for host defense against a number of different inhaled microorganisms.  相似文献   

5.
Geographic patterns of species richness ultimately arise through the processes of speciation, extinction, and dispersal, but relatively few studies consider evolutionary and biogeographic processes in explaining these diversity patterns. One explanation for high tropical species richness is that many species-rich clades originated in tropical regions and spread to temperate regions infrequently and more recently, leaving little time for species richness to accumulate there (assuming similar rates of diversification in temperate and tropical regions). However, the major clades of anurans (frogs) and salamanders may offer a compelling counterexample. Most salamander families are predominately temperate in distribution, but the one primarily tropical clade (Bolitoglossinae) contains nearly half of all salamander species. Similarly, most basal clades of anurans are predominately temperate, but one largely tropical clade (Neobatrachia) contains approximately 96% of anurans. In this article, I examine patterns of diversification in frogs and salamanders and their relationship to large-scale patterns of species richness in amphibians. I find that diversification rates in both frogs and salamanders increase significantly with decreasing latitude. These results may shed light on both the evolutionary causes of the latitudinal diversity gradient and the dramatic but poorly explained disparities in the diversity of living amphibian clades.  相似文献   

6.
The morphology and phagocytic activity of peritoneal exudate cells (PEC) obtained by an intraperitoneal injection of liquid paraffin into tilapia, Oreochromis niloticus , and carp, Cyprinus carpio , were studied with light and electron microscopy. PEC consisted of monocyte-macrophage series cells (M-Mø), neutrophils, eosinophils (granular cells) and others. Cells exhibiting the same morphology as mammalian macrophages but different from monocytes of the same species were identified with light and electron microscopy and designated as peritoneal macrophages. Light and electron microscopy revealed that M-Mø, neutrophils and eosinophils (granular cells) phagocytozed foreign materials added in vivo and in vitro. Eosinophils appeared later in the peritoneal exudate and less actively phagocytic as compared with M-Mø and neutrophils. Small and large phagosomes were formed in M-Mø, neutrophils and eosinophils (granular cells). Large phagosomes were common in neutrophils. Fusion of cytoplasmic granules with the phagosome membrane was observed. The in vitro experiment on phagocytosis revealed that the phagocytic rates in M-Mø and neutrophils were positively correlated with the doses of foreign materials. The results indicated that these two cell types have the highest capacity of phagocytosis.  相似文献   

7.
利用淀粉多糖和免疫促进剂(白喉类毒素和卡介苗)诱导和活化小鼠腹腔巨噬细胞,观察了四种异质性荧光染色的巨噬细胞非特异性和特异性吞噬活性。实验证明,深蓝色和淡蓝色荧光的巨噬细胞是分化程度低的幼稚细胞,非特异性吞噬功能较弱,但在特异性吞噬过程中呈现了活跃的吞噬活性,特别是在免疫促进剂的活化下,它们的特异性吞噬功能显著增强、淡蓝绿色荧光的巨噬细胞是分化程度较高、非特异性和特异性吞噬功能最旺盛的巨噬细胞,而黄色荧光的巨噬细胞是分化程度最高、特异性吞噬功能较减退的巨噬细胞。  相似文献   

8.
Using immunocytochemical procedures and RIA tests, the presence of immunoreactive ACTH and beta-endorphin molecules in the basophils and neutrophils of urodelan amphibians (Salamandra s. salamandra, Triturus c. carnifex, Speleomantes imperialis) has been established. Moreover, it was observed that not only neutrophils but also basophils have phagocytic activity. The findings reported suggest that: 1) a relationship exists between the immune and neuroendocrine systems, and 2) the opioid-like molecules play a physiological role in the process of phagocytosis. Indeed, ACTH increases the phagocytic activity.  相似文献   

9.
The structure of the roof of the fourth ventricle in 10 amphibian species has been examined histologically using serial sections of complete skulls containing the brain and intact meninges. The caudal end of the roof, the posterior tela, consists of a single layer of epithelial cells which are continuous with the ependymal cells which line the walls of the fourth ventricle. The structure of the posterior tela varies according to the species: in the urodele amphibians and Xenopus it consists of a complete and continuous layer of cells, whereas the anurans, excluding Xenopus , have a posterior tela consisting of cells arranged in clumps and short strings. The discontinuous structure of the posterior tela in the anurans gives apparent communication between the ventricular system and the subarachnoid space and this area may be a site for exchange of cerebrospinal fluid between the two compartments.  相似文献   

10.
Bos DH  DeWoody JA 《Immunogenetics》2005,57(10):775-781
Major histocompatibility complex (MHC) class II genes are usually among the most polymorphic in vertebrate genomes because of their critical role (antigen presentation) in immune response. Prior to this study, the MHC was poorly characterized in tiger salamanders (Ambystoma tigrinum), but the congeneric axolotl (Ambystoma mexicanum) is thought to have an unusual MHC. Most notably, axolotl class II genes lack allelic variation and possess a splice variant without a full peptide binding region (PBR). The axolotl is considered immunodeficient, but it is unclear how or to what extent MHC genetics and immunodeficiency are interrelated. To study the evolution of MHC genes in urodele amphibians, we describe for the first time an expressed polymorphic class II gene in wild tiger salamanders. We sequenced the PBR of a class II gene from wild A. tigrinum (n=33) and identified nine distinct alleles. Observed heterozygosity was 73%, and there were a total of 46 polymorphic sites, most of which correspond to amino acid positions that bind peptides. Patterns of nucleotide substitutions exhibit the signature of diversifying selection, but no recombination was detected. Not surprisingly, transspecies evolution of tiger salamander and axolotl class II alleles was apparent. We have no direct data on the immunodeficiency of tiger salamanders, but the levels of polymorphism in our study population should suffice to bind a variety of foreign peptides (unlike axolotls). Our tiger salamander data suggest that the monomorphism and immunodeficiencies associated with axolotl class II genes is a relict of their unique historical demography, not their phylogenetic legacy. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

11.
Globally, amphibians are undergoing a precipitous decline. At the last estimate in 2004, 32% of the approximately 6000 species were threatened with extinction and 43% were experiencing significant declines. These declines have been linked with a wide range of environmental pressures from habitat loss to climate change, disease and pollution. This review evaluates the evidence that endocrine‐disrupting contaminants (EDCs) – pollutants that affect hormone systems – are impacting on wild amphibians and contributing to population declines. The review is limited to anurans (frogs and toads) as data for effects of EDCs on wild urodeles (salamanders, newts) or caecilians (limbless amphibians) are extremely limited. Evidence from laboratory studies has shown that a wide range of chemicals have the ability to alter hormone systems and affect reproductive development and function in anurans, but for the most part only at concentrations exceeding those normally found in natural environments. Exceptions can be found for exposures to the herbicide atrazine and polychlorinated biphenyls in leopard frogs (Rana pipiens) and perchlorate in African clawed frogs (Xenopus laevis). These contaminants induce feminising effects on the male gonads (including ‘intersex’ – oocytes within testes) at concentrations measured in some aquatic environments. The most extensive data for effects of an EDC in wild amphibian populations are for feminising effects of atrazine on male gonad development in regions across the USA. Even where strong evidence has been provided for feminising effects of EDCs, however, the possible impact of these effects on fertility and breeding outcome has not been established, making inference for effects on populations difficult. Laboratory studies have shown that various chemicals, including perchlorate, polychlorinated biphenyls and bromodiphenylethers, also act as endocrine disrupters through interfering with thyroid‐dependent processes that are fundamental for amphibian metamorphosis. Perchlorate has also been shown to induce these effects in wild anuran populations from perchlorate‐contaminated environments. Overall, the published data available suggest that some health effects observed in wild anuran populations, most notably intersex, likely have a chemical aetiology; however they derive only from very few anuran species and for a few pesticides at field sites in the USA. To understand better the impacts of EDCs on wild anuran populations, as well as other amphibian groups, assessment of fertility in exposed animals are required. Development of non‐destructive biomarkers that are indicative of specific EDC‐effect mechanisms are also needed to allow the study of vulnerable populations. This will help to distinguish the effects of EDCs from other environmental and/or genetic influences on development and reproduction.  相似文献   

12.
Global wildlife trade exacerbates the spread of nonindigenous species. Pathogens also move with hosts through trade and often are released into naïve populations with unpredictable outcomes. Amphibians are moved commercially for pets, food, bait, and biomedicine, and are an excellent model for studying how wildlife trade relates to pathogen pollution. Ranaviruses are amphibian pathogens associated with annual population die-offs; multiple strains of tiger salamander ranaviruses move through the bait trade in the western United States. Ranaviruses infect amphibians, reptiles, and fish and are of additional concern because they can switch hosts. Tiger salamanders are used as live bait for freshwater fishing and are a potential source for ranaviruses switching hosts from amphibians to fish. We experimentally injected largemouth bass with a bait trade tiger salamander ranavirus. Largemouth bass became infected but exhibited no signs of disease or mortality. Amphibian bait ranaviruses have the potential to switch hosts to infect fish, but fish may act as dead-end hosts or nonsymptomatic carriers, potentially spreading infection as a result of trade.  相似文献   

13.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

14.
许多卵生动物具有对付食卵者的精巧策略以降低死亡率,因为早期发育阶段的捕食压力能显著影响具复杂生活史动物的生存。两栖动物卵被水蛭等很多物种所捕食。我们查阅了水蛭捕食两栖类卵的文献,发现27篇论文。在所报道的水蛭捕食两栖类卵的例子中,无尾类(3.6%,n=591)明显多于有尾类(1.6%,n=255)。此外,我们第一次记录到水蛭捕食四趾螈(Salamandrina perspicillata)卵,这也是西欧有尾类的第一例报道。我们没有发现两个两栖动物类群间存在差异。然而,当我们分别分析来自北美、欧洲和亚洲三个地区的数据时,发现北美的有尾类和无尾类间存在显著差异。水蛭可捕食各生活史阶段的两栖动物,因此,水蛭应归为一些两栖类的天敌。  相似文献   

15.
Variation in the content and pattern of brain gangliosides from three anurans and two urodeles was analysed by thin-layer chromatography. The pattern for all three anurans was basically similar, though quantitative differences among species were detected. Ganglioside patterns from the two salamanders were distinctively different from that of the anurans and from one another, and more closely resembled the patterns seen in other tetrapods. Ganglioside variations in amphibians appear to reflect phylogenetic relationships better than life history or ecological factors.  相似文献   

16.
In 1998 viruses were isolated from tiger salamander larvae (Ambystoma tigrinum diaboli and A. tigrinum melanostictum) involved in North Dakota and Utah (USA) mortality events and spotted salamander (A. maculatum) larvae in a third event in Maine (USA). Although sympatric caudates and anurans were present at all three sites only ambystomid larvae appeared to be affected. Mortality at the North Dakota site was in the thousands while at the Utah and Maine sites mortality was in the hundreds. Sick larvae were lethargic and slow moving. They swam in circles with obvious buoyancy problems and were unable to remain upright. On the ventral surface, near the gills and hind limbs, red spots or swollen areas were noted. Necropsy findings included: hemorrhages and ulceration of the skin, subcutaneous and intramuscular edema, swollen and pale livers with multifocal hemorrhage, and distended fluid-filled intestines with areas of hemorrhage. Light microscopy revealed intracytoplasmic inclusions, suggestive of a viral infection, in a variety of organs. Electron microscopy of ultra thin sections of the same tissues revealed iridovirus-like particles within the inclusions. These viruses were isolated from a variety of organs, indicating a systemic infection. Representative viral isolates from the three mortality events were characterized using molecular assays. Characterization confirmed that the viral isolates were iridoviruses and that the two tiger salamander isolates were similar and could be distinguished from the spotted salamander isolate. The spotted salamander isolate was similar to frog virus 3, the type species of the genus Ranavirus, while the tiger salamander isolates were not. These data indicate that different species of salamanders can become infected and die in association with different iridoviruses. Challenge assays are required to determine the fish and amphibian host range of these isolates and to assess the susceptibility of tiger and spotted salamanders to heterologous virus isolates.  相似文献   

17.
Phagocytosis by fish cells has mostly been studied using adherent leucocytes, excluding suspended cells such as the majority of B-cells and neutrophils, but a recent study describes professional phagocytosis of latex beads and bacteria by B-cells from rainbow trout. In the present study, phagocytosis by B-cells and neutrophils from salmon and cod was studied. Leucocytes were isolated from peripheral blood (PBL) and head kidney (HKL). By flow cytometry analyses, proportions of MAb labelled cell populations with internalized fluorescent beads, as well as the number of beads within each cell, could be determined. Phagocytic capacity and ability were demonstrated in B-cells and neutrophils from salmon and cod. In salmon, B-cells had higher phagocytic ability than neutrophils in HKL, but not in PBL. For cod the phagocytic ability of B-cells were lower than for neutrophils in both HKL and PBL, but the phagocytic capacity of cod B-cells were higher than for neutrophils in both HKL and PBL. For salmon B-cells the phagocytic capacity was lower than or similar to neutrophils in HKL and PBL. The total phagocytic ability of leucocytes was different in the species studied. The highest phagocytic ability was observed in cod, showing similar values for PBL and HKL. Salmon PBL displayed about twice the phagocytic ability of cod PBL. There seemed to be some major differences between the two fish species concerning phagocytosis. In salmon, a rather large proportion of phagocytic leucocytes were phagocytic B-cells, indicating that B-cells may have an important function in particle clearance in this species. In cod, phagocytic leucocytes in HKL and PBL were mostly neutrophils, and only a small proportion of B-cells were phagocytic, supporting the more prominent role of innate immune functions in cod neutrophils.  相似文献   

18.
19.
王娜  邵晨  颉志刚  凌云  程东海 《生态学报》2012,32(11):3538-3545
全球气候变化是造成世界范围内两栖类种群衰退和灭绝的重要因素之一。随着极端天气出现变得日趋频繁,非季节性的、短期且剧烈的气温变化可能会严重干扰两栖类动物的生存与种群稳定。监测了浙江省金华市南山野生虎纹蛙(Hoplobatrachus rugulosus)分布区冬季的环境气温,并参考监测数据在实验室条件下研究了虎纹蛙在短期梯度降温(2℃/24 h)和急性冷暴露(即冷休克)(2℃)下的生存力及冷休克对机体免疫功能和抗氧化能力的影响。结果表明,虎纹蛙在冬季(2009-12-01—2010-03-31)经历的温度范围普遍在0—14℃之间,主要遭遇的低温区间在0—4℃,主要高温区间在10—14℃。通过梯度降温实验,发现温度降至12℃累积死亡率约为28.1%,10℃为87.5%,8℃为100%。在一定温度范围内,虎纹蛙死亡率与环境温度呈显著负相关(Pearson test,r=-0.952,P<0.05)。经曲线拟合,回归方程计算可得半数致死温度为11.5℃。虎纹蛙在冷休克处理下,在第6 h累积死亡率为45%,12 h为80%,24 h达到100%。虎纹蛙死亡率与冷休克时间呈显著正相关(Pearson test,r=0.91,P<0.05),半数致死时间为7.6 h。此外,冷休克(2℃,6 h)显著抑制了虎纹蛙脾脏巨噬细胞呼吸爆发强度(t=3.827,df=6,P<0.05)、全血吞噬活性(t=5.388,df=3.037,P<0.05)及胃溶菌酶活力(t=6.37,df=6,P<0.05);肝脏(t=0.773,df=8,P>0.05)和肾脏(t=0.164,df=4.542,P>0.05)组织脂质过氧化物产物丙二醛(MDA)的含量虽无明显变化,但肝脏(t=-2.817,df=6,P<0.05)和肾脏(t=-11.302,df=6,P<0.05)组织抗氧化物谷胱甘肽(GSH)含量及肝脏(t=-3.3,df=6,P<0.05)超氧化物歧化酶(SOD)活性均显著升高。上述结果表明虎纹蛙对低温较为敏感,冷休克能够诱导机体的免疫抑制,并导致机体对抗氧化物质需求的增加。可以推测,当遭遇极端低温天气时,低温胁迫可能会严重干扰虎纹蛙生理机能,加大种群的生存压力和疾病感染的风险。  相似文献   

20.
The extracellular slime produced by Staphylococcus epidermidis has been shown to interfere with several human neutrophil functions in vitro, such as chemotaxis, degranulation and phagocytosis. Slime production has been suggested as a useful marker for clinically significant infections with coagulase-negative Staphylococcus. Since the main role of macrophages in defense mechanisms is phagocytosis, the effect of slime on the phagocytic activity of macrophages was investigated. The phagocytic activity of murine peritoneal macrophages treated with slime in vitro decreased in a dose-dependent fashion. A similar decrease was also observed in macrophages isolated from mice that had previously received intraperitoneal injection of slime. To investigate whether interferon also plays a role in this process, mice were treated with interferon or an interferon inducer, polyinosinic-polycytidylic acid (poly I:C), together with slime before macrophage isolation. The slime-suppressed phagocytic activity of macrophages was partially relieved by both agents, and the recovery effect of poly I:C in slime-suppressed phagocytosis of macrophages in vivo might be attributed to the increased interferon level in peritoneal fluid and sera. However, when slime was given to poly I:C-pretreated mice, the phagocytic activity remained suppressed. Thus, it appears that slime is able to suppress the phagocytic activity of macrophages regardless of the state of macrophage activation by poly I:C. The results suggest that the inhibition of phagocytosis by S. epidermidis slime may be independent from the activation of interferon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号