首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although lysines are known to be critical for ligand binding to LDL receptor family receptors, relatively small reductions in affinity have been found when such lysines have been mutated. To resolve this paradox, we have examined the specific binding contributions of four lysines, Lys-253, Lys-256, Lys-270, and Lys-289, in the third domain (D3) of receptor-associated protein (RAP), by eliminating all other lysine residues. Using D3 variants containing lysine subsets, we examined binding to the high affinity fragment CR56 from LRP1. With this simplification, we found that elimination of the lysine pairs Lys-253/Lys-256 and Lys-270/Lys-289 resulted in increases in Kd of 1240- and 100,000-fold, respectively. Each pair contributed additively to overall affinity, with 61% from Lys-270/Lys-289 and 39% from Lys-253/Lys-256. Furthermore, the Lys-270/Lys-289 pair alone could bind different single CR domains with similar affinity. Within the pairs, binding contributions of Lys-270 ≫ Lys-256 > Lys-253 ∼ Lys-289 were deduced. Importantly, however, Lys-289 could significantly compensate for the loss of Lys-270, thus explaining how previous studies have underestimated the importance of Lys-270. Calorimetry showed that favorable enthalpy, from Lys-256 and Lys-270, overwhelmingly drives binding, offset by unfavorable entropy. Our findings support a mode of ligand binding in which a proximal pair of lysines engages the negatively charged pocket of a CR domain, with two such pairs of interactions (requiring two CR domains), appropriately separated, being alone sufficient to provide the low nanomolar affinity found for most protein ligands of LDL receptor family members.  相似文献   

2.
The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that recognizes more than 30 different ligands and plays important roles in protease and lipoprotein catabolism. Ligand binding to newly synthesized LRP is modulated by the receptor-associated protein (RAP), an endoplasmic reticulum-resident protein that functions as a molecular chaperone and prevents ligands from associating with LRP via an allosteric-type mechanism. RAP is a multidomain protein that contains two independent LRP binding sites, one located at the amino-terminal portion of the molecule and the other at the carboxyl-terminal portion of the molecule. The objective of the present investigation was to gain insight into how these two regions of RAP interact with LRP and function to modulate its ligand binding properties. These objectives were accomplished by random mutagenesis of RAP, which identified two critical lysine residues, Lys-256 and Lys-270, within the carboxyl-terminal domain that are necessary for binding of this region of RAP to LRP and to heparin. RAP molecules in which either of these two lysine residues was mutated still bound LRP but with reduced affinity. Furthermore, the mutant RAPs were significantly impaired in their ability to inhibit alpha(2)M* binding to LRP via allosteric mechanisms. In contrast, the mutant RAP molecules were still effective at inhibiting uPA.PAI-1 binding to LRP. These results confirm that both LRP binding sites within RAP cooperate to inhibit ligand binding via an allosteric mechanism.  相似文献   

3.
The receptor associated protein (RAP) is a three domain 38kDa ER-resident chaperone that helps folding of LRP and other LDL receptor family members and prevents premature binding of protein ligands. It competes strongly with all known LRP ligands. To further understanding of the specificity of RAP-LRP interactions, the binding of RAP and RAP fragments to two domains (CR7-CR8) from one of the main ligand-binding regions of LRP has been examined by 2D HSQC NMR spectroscopy and isothermal titration calorimetry. We found that RAP contains two binding sites for CR7-CR8, with the higher affinity site (K(d) approximately 1microM) located in the C-terminal two-thirds and the weaker site (K(d) approximately 5microM) in the N-terminal third of RAP. Residues from both CR7 and CR8 are involved in binding at each RAP site. The presence of more than one binding site on RAP for CR domains from LRP, together with the previous demonstration by others that RAP can bind to CR5-CR6 with comparably low affinities suggest an explanation for the dual roles of RAP as a folding chaperone and a tight competitive inhibitor of ligand binding.  相似文献   

4.
The low-density lipoprotein receptor (LDLR) family of receptors are cell-surface receptors that internalize numerous ligands and play crucial role in various processes, such as lipoprotein metabolism, hemostasis, fetal development, etc. Previously, receptor-associated protein (RAP) was described as a molecular chaperone for LDLR-related protein 1 (LRP1), a prominent member of the LDLR family. We aimed to verify this role of RAP for LRP1 and two other LDLR family receptors, LDLR and vLDLR, and to investigate the mechanisms of respective interactions using a cell culture model system, purified system, and in silico modelling. Upon coexpression of RAP with clusters of the ligand-binding complement repeats (CRs) of the receptors in secreted form in insect cells culture, the isolated proteins had increased yield, enhanced folding, and improved binding properties compared with proteins expressed without RAP, as determined by circular dichroism and surface plasmon resonance. Within LRP1 CR-clusters II and IV, we identified multiple sites comprised of adjacent CR doublets, which provide alternative bivalent binding combinations with specific pairs of lysines on RAP. Mutational analysis of these lysines within each of isolated RAP D1/D2 and D3 domains having high affinity to LRP1 and of conserved tryptophans on selected CR-doublets of LRP1, as well as in silico docking of a model LRP1 CR-triplet with RAP, indicated a universal role for these residues in interaction of RAP and LRP1. Consequently, we propose a new model of RAP interaction with LDLR family receptors based on switching of the bivalent contacts between molecules over time in a dynamic mode.  相似文献   

5.
Previous Brownian dynamics (BD) simulations (Ouporov IG, Knull HR and Thomasson KA 1999. Biophys. J. 76: 17-27) of complex formation between rabbit aldolase and F-actin have identified three lysine residues (K288, K293 and K341) on aldolase and acidic residues (DEDE) at the N-terminus of actin as important to binding. BD simulations of computer models of aldolase mutants with any of these lysine residues replaced by alanine show reduced binding energy; the greatest effect of a single substitution is for K341A, and replacement of all three lysines greatly reduces binding. BD simulations of wild-type rabbit aldolase vs altered F-actin show that binding is decreased if any one of the four N-terminal acidic residues is replaced by alanine and binding is greatly reduced if three or more of the N-terminal acidic residues are replaced; none of the four actin residues appear more critical for binding than the others.  相似文献   

6.
Lysine residues are implicated in driving the ligand binding to the LDL receptor family. However, it has remained unclear how specificity is regulated. Using coagulation factor VIII as a model ligand, we now study the contribution of individual lysine residues in the interaction with the largest member of the LDL receptor family, low-density lipoprotein receptor-related protein (LRP1). Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and SPR interaction analysis on a library of lysine replacement variants as two independent approaches, we demonstrate that the interaction between factor VIII (FVIII) and LRP1 occurs over an extended surface containing multiple lysine residues. None of the individual lysine residues account completely for LRP1 binding, suggesting an additive binding model. Together with structural docking studies, our data suggest that FVIII interacts with LRP1 via an extended surface of multiple lysine residues that starts at the bottom of the C1 domain and winds around the FVIII molecule.  相似文献   

7.
The LRP (low-density lipoprotein receptor-related protein) can bind a wide range of structurally diverse ligands to regions composed of clusters of ~40 residue Ca2+-dependent, disulfide-rich, CRs (complement-like repeats). Whereas lysine residues from the ligands have been implicated in binding, there has been no quantification of the energetic contributions of such interactions and hence of their relative importance in overall affinity, or of the ability of arginine or histidine residues to bind. We have used four representative CR domains from the principal ligand-binding cluster of LRP to determine the energetics of interaction with well-defined small ligands that include methyl esters of lysine, arginine, histidine and aspartate, as well as N-terminally blocked lysine methyl ester. We found that not only lysine but also arginine and histidine bound well, and when present with an additional proximal positive charge, accounted for about half of the total binding energy of a protein ligand such as PAI-1 (plasminogen activator inhibitor-1). Two such sets of interactions, one to each of two CR domains could thus account for almost all of the necessary binding energy of a real ligand such as PAI-1. For the CR domains, a central aspartate residue in the sequence DxDxD tightens the Kd by ~20-fold, whereas DxDDD is no more effective. Together these findings establish the rules for determining the binding specificity of protein ligands to LRP and to other LDLR (low-density lipoprotein receptor) family members.  相似文献   

8.
Conserved lysines and arginines within amino acids 140-150 of apolipoprotein (apo) E are crucial for the interaction between apoE and the low density lipoprotein receptor (LDLR). To explore the roles of amphipathic alpha-helix and basic residue organization in the binding process, we performed site-directed mutagenesis on the 22-kDa fragment of apoE (amino acids 1-191). Exchange of lysine and arginine at positions 143, 146, and 147 demonstrated that a positive charge rather than a specific basic residue is required at these positions. Consistent with this finding, substitution of neutral amino acids for the lysines at positions 143 and 146 reduced the binding affinity to about 30% of the wild-type value. This reduction corresponds to a decrease in free energy of binding of approximately 600 cal/mol, consistent with the elimination of a hydrogen-bonded ion pair (salt bridge) between a lysine on apoE and an acidic residue on the LDLR. Binding activity was similarly reduced when K143 and K146 were both mutated to arginine (K143R + K146R), indicating that more than the side-chain positive charge can be important.Exchanging lysines and leucines indicated that the amphipathic alpha-helical structure of amino acids 140-150 is critical for normal binding to the low density lipoprotein receptor.  相似文献   

9.
The region of apolipoprotein E (apoE) that interacts directly with the low density lipoprotein (LDL) receptor lies in the vicinity of residues 136-150, where lysine and arginine residues are crucial for full binding activity. However, defective binding of carboxyl-terminal truncations of apoE3 has suggested that residues in the vicinity of 170-183 are also important. To characterize and define the role of this region in LDL receptor binding, we created either mutants of apoE in which this region was deleted or in which arginine residues within this region were sequentially changed to alanine. Deletion of residues 167-185 reduced binding activity (15% of apoE3), and elimination of arginines at positions 167, 172, 178, and 180 revealed that only position 172 affected binding activity (2% of apoE3). Substitution of lysine for Arg(172) reduced binding activity to 6%, indicating a specific requirement for arginine at this position. The higher binding activity of the Delta167-185 mutant relative to the Arg(172) mutant (15% versus 2%) is explained by the fact that arginine residues at positions 189 and 191 are shifted in the deletion mutant into positions equivalent to 170 and 172 in the intact protein. Mutation of these residues and modeling the region around these residues suggested that the influence of Arg(172) on receptor binding activity may be determined by its orientation at a lipid surface. Thus, the association of apoE with phospholipids allows Arg(172) to interact directly with the LDL receptor or with other residues in apoE to promote its receptor-active conformation.  相似文献   

10.
Apolipoprotein E (apoE), an apoprotein involved in lipid transport in both the plasma and within the brain, mediates the binding of lipoproteins to members of the low density lipoprotein (LDL) receptor family including the LDL receptor and the LDL receptor-related protein (LRP). ApoE/LRP interactions may be particularly important in brain where both are expressed at high levels, and polymorphisms in the apoE and LRP genes have been linked to AD. To date, only apoE-enriched lipoproteins have been shown to be LRP ligands. To investigate further whether other, more lipid-poor forms of apoE interact with LRP, we tested whether lipid-free apoE in the absence of lipoprotein particles interacts with its cell-surface receptors. No detectable lipid was found associated with bacterially expressed and purified apoE either prior to or following incubation with cells when analyzed by electrospray ionization mass spectrometry. We found that the degradation of lipid-poor (125)I-apoE was significantly higher in wild type as compared to LRP-deficient cells, and was inhibited by receptor-associated protein (RAP). In contrast, (125)I-apoE-enriched beta-VLDL was degraded by both LRP and the LDL receptor. When analyzed via a single cycle of endocytosis, (125)I-apoE was internalized prior to its subsequent intracellular degradation with kinetics typical of receptor-mediated endocytosis. Thus, we conclude that a very lipid-poor form of apoE can be catabolized via cell surface LRP, suggesting that the conformation of apoE necessary for recognition by LRP can be imposed by situations other than an apoE-enriched lipoprotein.  相似文献   

11.
The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) consists of two polypeptides, 515 and 85 kDa, that are noncovalently associated. A 39-kDa polypeptide, termed the receptor-associated protein (RAP), interacts with the 515-kDa subunit after biosynthesis of these molecules and remains associated on the cell surface. This molecule regulates ligand binding of alpha 2MR/LRP (Herz, J., Goldstein, J. L., Strickland, D. K., Ho, Y. K., and Brown, M. S. (1991) J. Biol. Chem. 266, 21232-21238). Titration and binding studies indicate that RAP binds to two equivalent binding sites on alpha 2MR/LRP, with a KD of 14 nM. Heterologous ligand displacement experiments demonstrated that RAP completely inhibits the binding of 125I-activated alpha 2M to human fibroblasts and to the purified alpha 2MR/LRP, with a Ki of 23 and 26 nM, respectively. A direct correlation between the degree of binding of RAP to the receptor and the degree of ligand inhibition was observed, indicating that as the RAP binding sites are saturated, alpha 2MR/LRP loses its ability to bind ligands. Thus, the amount of RAP bound to alpha 2MR/LRP dictates the level of receptor activity. A model is proposed in which alpha 2MR/LRP contains multiple ligand binding sites, each regulated by a separate RAP site.  相似文献   

12.
The multifunctional low density lipoprotein (LDL) receptor-related protein (LRP) forms a complex with a receptor-associated protein (RAP) within the secretory pathway. RAP inhibits ligand binding to LRP and is required for normal functional expression of LRP in vivo, suggesting a physiological function as a specialized chaperone. We have used RAP-deficient mice, generated by gene targeting, to investigate the role of RAP in the biosynthesis and biological activity of LRP and other members of the LDL receptor gene family in various organs and in embryonic fibroblasts. Our results demonstrate that RAP is required for the proper folding and export of the receptors from the endoplasmic reticulum (ER) by preventing the premature binding of co-expressed ligands. Overexpression of apolipoprotein E (apoE), a high affinity ligand for LRP, results in dramatically reduced cellular LRP expression, an effect that is prevented by co-expression of RAP. RAP thus defines a novel class of molecular chaperones that selectively protect endocytic receptors by binding to newly synthesized receptor polypeptides, thereby preventing ligand-induced aggregation and subsequent degradation in the ER.  相似文献   

13.
Given the importance of the low density lipoprotein receptor-related protein (LRP) as an essential endocytosis and signaling receptor for many protein ligands, and of alpha2-macroglobulin (alpha2M)-proteinase complexes as one such set of ligands, an understanding of the specificity of their interaction with LRP is an important goal. A starting point is the known role of the 138-residue receptor binding domain (RBD) in binding to LRP. Previous studies have localized high affinity alpha2M binding to the eight complement repeat (CR)-containing cluster 2 of LRP. In the present study we have identified the minimum CR domains that constitute the full binding site for RBD and, hence, for alpha2M on LRP. We report on the ability of the triple construct of CR3-4-5 to bind RBD with an affinity (Kd = 130 nM) the same as for isolated RBD to intact LRP. This Kd is 30-fold smaller than for RBD to CR5-6-7, demonstrating the specificity of the interaction with CR3-4-5. Binding requires previously identified critical lysine residues but is almost pH-independent within the range of pH values encountered between extracellular and internal compartments, consistent with an earlier proposed model of intracellular ligand displacement by intramolecular YWTD domains. The present findings suggest a model to explain the ability of LRP to bind a wide range of structurally unrelated ligands in which a nonspecific ligand interaction with the acidic region present in most CR domains is augmented by interactions with other CR surface residues that are unique to a particular CR cluster.  相似文献   

14.
The 39 kDa receptor-associated protein (RAP) is a three-domain escort protein in the secretory pathway for several members of the low-density lipoprotein receptor (LDLR) family of endocytic receptors, including the LDLR-related protein (LRP). The minimal functional unit of LRP required for efficient binding to RAP is composed of complement-type repeat (CR)-domain pairs, located in clusters on the extracellular part of LRP. Here we investigate the binding of full-length RAP and isolated RAP domains 1-3 to an ubiquitin-fused CR-domain pair consisting of the fifth and sixth CR domains of LRP (U-CR56). As shown by isothermal titration calorimetric analysis of simple RAP domains as well as adjoined RAP domains, all three RAP domains bind to this CR-domain pair in a noncooperative way. The binding of U-CR56 to RAP domains 1 and 2 is (at room temperature) enthalpically driven with an entropy penalty (K(D) = 2.77 x 10(-6) M and 1.85 x 10(-5) M, respectively), whereas RAP domain 3 binds with a substantially lower enthalpy, but is favored due to a positive entropic contribution (K(D) = 1.71 x 10(-7) M). The heat capacity change for complex formation between RAP domain 1 and the CR-domain pair is -1.65 kJ K(-1) mol(-1). There is an indication of a conformational change in RAP domain 3 upon binding in the surface plasmon resonance analysis of the interaction. The different mechanisms of binding to RAP domains 1 and 3 are further substantiated by the different effects on binding of mutations of the Asp and Trp residues in the LRP CR5 or CR6 domains, which are important for the recognition of several ligands.  相似文献   

15.
The low density lipoprotein receptor-related protein (LRP), a member of the low density lipoprotein receptor family, mediates the internalization of a diverse set of ligands. The ligand binding sites are located in different regions of clusters consisting of approximately 40 residues, cysteine-rich complement-type repeats (CRs). The 39-40-kDa receptor-associated protein, a folding chaperone/escort protein required for efficient transport of functional LRP to the cell surface, is an antagonist of all identified ligands. To analyze the multisite inhibition by RAP in ligand binding of LRP, we have used an Escherichia coli expression system to produce fragments of the entire second ligand binding cluster of LRP (CR3-10). By ligand affinity chromatography and surface plasmon resonance analysis, we show that RAP binds to all two-repeat modules except CR910. CR10 differs from other repeats in cluster II by not containing a surface-exposed conserved acidic residue between Cys(IV) and Cys(V). By site-directed mutagenesis and ligand competition analysis, we provide evidence for a crucial importance of this conserved residue for RAP binding. We provide experimental evidence showing that two adjacent complement-type repeats, both containing a conserved acidic residue, represent a minimal unit required for efficient binding to RAP.  相似文献   

16.
The 39-kDa receptor-associated protein (RAP) is a specialized chaperone for members of the low density lipoprotein receptor gene family, which also binds heparin. Previous studies have identified a triplicate repeat sequence within RAP that appears to exhibit differential functions. Here we generated a series of truncated and site-directed RAP mutants in order to define the sites within RAP that are important for interacting with heparin and low density lipoprotein receptor-related protein (LRP). We found that high affinity binding of RAP to heparin is mediated by the carboxyl-terminal repeat of RAP, whereas both the carboxyl-terminal repeat and a combination of amino and central repeats exhibit high affinity binding to LRP. Several motifs were found to mediate the binding of RAP to heparin, and each contained a cluster of basic amino acids; among them, an intact R(282)VSR(285)SR(287)EK(289) motif is required for high affinity binding of RAP to heparin, whereas two other motifs, R(203)LR(205)R(206) and R(314)ISR(317)AR(319), also contribute to this interaction. We also found that intact motifs of both R(203)LR(205)R(206) and R(282)VSR(285)SR(287)EK(289) are required for high affinity binding of RAP to LRP, with the third motif, R(314)ISR(317)AR(319), contributing little to RAP-LRP interaction. We conclude that electrostatic interactions likely contribute significantly in the binding of RAP to both heparin and LRP and that high affinity interaction with both heparin and LRP appears to require mostly overlapping sequence motifs within RAP.  相似文献   

17.
Ohta K  Masuda T  Ide N  Kitabatake N 《The FEBS journal》2008,275(14):3644-3652
Thaumatin is an intensely sweet-tasting protein. To identify the critical amino acid residue(s) responsible for elicitation of the sweetness of thaumatin, we prepared mutant thaumatin proteins, using Pichia pastoris, in which alanine residues were substituted for lysine or arginine residues, and the sweetness of each mutant protein was evaluated by sensory analysis in humans. Four lysine residues (K49, K67, K106 and K163) and three arginine residues (R76, R79 and R82) played significant roles in thaumatin sweetness. Of these residues, K67 and R82 were particularly important for eliciting the sweetness. We also prepared two further mutant thaumatin I proteins: one in which an arginine residue was substituted for a lysine residue, R82K, and one in which a lysine residue was substituted for an arginine residue, K67R. The threshold value for sweetness was higher for R82K than for thaumatin I, indicating that not only the positive charge but also the structure of the side chain of the arginine residue at position 82 influences the sweetness of thaumatin, whereas only the positive charge of the K67 side chain affects sweetness.  相似文献   

18.
The LDL receptor-associated protein (RAP) is a ligand for the LDL receptor-related protein (LRP1). The first and third domains of RAP can each bind to one of many sequence-related pairs of complement-type repeats (CR) found within the LRP1 ectodomain. Multiple sites of interaction between the multivalent RAP ligand and the multivalent LRP1 receptor yield strong binding avidity for the complex. The third domain of RAP can be significantly truncated, with material retention of monovalent CR pair-binding affinity, provided that the minimized sequence is stabilized with an intramolecular disulfide bond. We demonstrate that the avidity of full-length RAP for LRP1 in vitro can be partially reconstituted by assembly of truncated, disulfide-linked RAP peptides on tetravalent streptavidin or bivalent immunoglobulin scaffolds. The peptide complex with streptavidin shows pronounced hepatotropism in vivo, replicating the biodistribution of full-length RAP.  相似文献   

19.
Four residues in the carboxy-terminal domain of human epidermal growth factor (hEGF), glutamate 40, glutamine 43, arginine 45, and aspartate 46 were targeted for site-directed mutagenesis to evaluate their potential role in epidermal growth factor (EGF) receptor-ligand interaction. One or more mutations were generated at each of these sites and the altered recombinant hEGF gene products were purified and evaluated by radioreceptor competition binding assay. Charge-conservative replacement of glutamate 40 with aspartate resulted in a decrease in receptor binding affinity to 30% relative to wild-type hEGF. On the other hand, removal of the electrostatic charge by substitution of glutamate 40 with glutamine or alanine resulted in only a slightly greater decrease in receptor binding to 25% relative receptor affinity. The introduction of a positive charge upon substitution of glutamine 43 with lysine had no effect on receptor binding. The substitution of arginine 45 with lysine also showed no effect on receptor binding, unlike the absolute requirement observed for the arginine side-chain at position 41 [Engler DA, Campion SR, Hauser MR, Cook JS, Niyogi, SK: J Biol Chem 267:2274-2281, 1992]. Subsequent elimination of the positive charge of lysine 45 by reaction with potassium cyanate showed that the electrostatic property of the residue at this site, as well as that at lysine 28 and lysine 48, was not required for receptor-ligand association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The ability of the scavenger receptor of human monocyte macrophages to recognize human low density lipoproteins (LDL) progressively modified by three lysine-specific reagents, malondialdehyde, acetic anhydride, or succinic anhydride, has been investigated. Regardless of the reagent utilized, receptor-mediated uptake was dependent upon modification of greater than 16% of the peptidyl lysines rather than upon the net negative charge of derivatized LDL. Rates of lysosomal hydrolysis of acetyl-LDL and succinyl-LDL increased as a function of progressive modification and reflected the amount of derivatized LDL binding to the receptor. Succinylation or acetylation of greater than 60% of the lysines was necessary to attain maximal ligand binding, internalization, and degradation. In contrast, modification of only 16% of the peptidyl lysines by malondialdehyde resulted in maximal levels of binding, uptake, and hydrolysis. The expression of receptor recognition site(s) appears to depend upon the charge modification of critical lysine residues of the LDL protein rather than the net negative charge of the lipoprotein complex. Malondialdehyde, a bifunctional reactant, may modify surface and sequestered lysines concomitantly and thus promote efficient formation of the recognition site(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号