首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucans are the most abundant polysaccharides present in fungi. The present review provides updated information on the structure and synthesis of -glucans in fungal cells. Synthesis of these polymers made up of B1,3 chains with a variable degree of B1,6 branching involves several reactions: initiation, chain elongation and branching, of which the most studied one is the elongation step. This reaction, catalyzed by the so-called glucan synthetases, utilizes UDPG as sugar donor. Properties of glucan synthetases are extremely variable depending on the fungal species, and their developmental stage. Because of the importance of these polysaccharides it is anticipated that comprehension of their mechanism of synthesis, is important for the understanding of cell wall assembly and cell growth and morphogenesis, as well as for the design of specific antifungal drugs.Abreviations UDPG uridine-diphospho-glucose - GDPG guanosine-diphospho-glucose - ADPG adenosine-diphospho-glucose - MW molecular weight - mic minimal inhibitory concentration - d.p. degree of polymerization - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

2.
Susceptibility to deadly diarrheal diseases is partly due to widespread pediatric vitamin A deficiency. To increase vitamin A coverage in malnourished children, we propose to engineer a probiotic bacterium that will produce β-carotene in the intestine, which will be metabolized to vitamin A. Such a therapy has the potential to broadly stimulate mucosal immunity and simultaneously reduce the incidence and duration of diarrheal disease. To that end, a β-carotene-producing variant of the probiotic Escherichia coli strain Nissle 1917 (EcN-BETA) was generated. Notably, the strain produces β-carotene under anaerobic conditions, reflective of the gut environment. EcN-BETA also retains β-carotene production capability after lyophilization, suggesting that it may be amenable to dry formulation. Moreover, EcN-BETA activates murine dendritic cells in vitro, suggesting that the presence of β-carotene may not diminish the immunostimulatory capacity of EcN. Finally, we present a framework through which further improvements may enable approaches such as the one described in this report to yield innovative life-saving therapies for the developing world.  相似文献   

3.
One efficient approach to assigning function to unannotated genes is to establish the enzymes that are missing in known biosynthetic pathways. One group of such pathways is those involved in coenzyme biosynthesis. In the case of the methanogenic archaeon Methanocaldococcus jannaschii as well as most methanogens, none of the expected enzymes for the biosynthesis of the β-alanine and pantoic acid moieties required for coenzyme A are annotated. To identify the gene(s) for β-alanine biosynthesis, we have established the pathway for the formation of β-alanine in this organism after experimentally eliminating other known and proposed pathways to β-alanine from malonate semialdehyde, l-alanine, spermine, dihydrouracil, and acryloyl-coenzyme A (CoA). Our data showed that the decarboxylation of aspartate was the only source of β-alanine in cell extracts of M. jannaschii. Unlike other prokaryotes where the enzyme producing β-alanine from l-aspartate is a pyruvoyl-containing l-aspartate decarboxylase (PanD), the enzyme in M. jannaschii is a pyridoxal phosphate (PLP)-dependent l-aspartate decarboxylase encoded by MJ0050, the same enzyme that was found to decarboxylate tyrosine for methanofuran biosynthesis. A Km of ∼0.80 mM for l-aspartate with a specific activity of 0.09 μmol min−1 mg−1 at 70°C for the decarboxylation of l-aspartate was measured for the recombinant enzyme. The MJ0050 gene was also demonstrated to complement the Escherichia coli panD deletion mutant cells, in which panD encoding aspartate decarboxylase in E. coli had been knocked out, thus confirming the function of this gene in vivo.  相似文献   

4.
We have engineered brewer's yeast as a general platform for de novo synthesis of diverse β-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of β-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce β-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 μg/g DCW) and the downstream β-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 μg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple β-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable β-lactam intermediates and new antibiotics.  相似文献   

5.
Plant Terpenoids: Biosynthesis and Ecological Functions   总被引:7,自引:0,他引:7  
Among plant secondary metabolites terpenolds are a structurally most diverse group; they function as phytoalexins In plant direct defense, or as signals In Indirect defense responses which involves herbivores and their natural enemies. In recent years, more and more attention has been paid to the Investigation of the ecological role of plant terpenolds. The biosynthesis pathways of monoterpenes, sesquiterpenes, and diterpenes Include the synthesis of C5 precursor isopentenyl diphosphate (IPP) and Its allylic isomer dlmethylallyl dlphosphate (DMAPP), the synthesis of the immediate diphosphate precursors, and the formation of the diverse terpenoids. Terpene synthases (TPSs) play a key role In volatile terpene synthesis. By expression of the TPS genes, significant achievements have been made on metabolic engineering to Increase terpenoid production. This review mainly summarizes the recent research progress In elucidating the ecological role of terpenoids and characterization of the enzymes Involved in the terpenold biosynthesis. Spatial and temporal regulations of terpenoids metabolism are also discussed.  相似文献   

6.
Phloroglucinol derivatives are a major class of secondary metabolites of wide occurrence in biological systems. In the bacteria kingdom, these compounds can only be synthesized by some species of Pseudomonads. Pseudomonas spp. could produce 2,4-diacetylphloroglucinol (DAPG) that plays an important role in the biological control of many plant pathogens. In this review, we summarize knowledge about synthesis of phloroglucinol compounds based on the DAPG biosynthetic pathway. Recent advances that have been made in understanding phloroglucinol compound biosynthesis and regulation are highlighted. From these studies, researchers have identified the biosynthesis pathway of DAPG. Most of the genes involved in the biosynthesis pathway have been cloned and characterized. Additionally, heterologous systems of the model microorganism Escherichia coli are constructed to produce phloroglucinol. Although further work is still required, a full understanding of phloroglucinol compound biosynthesis is almost within reach. This review also suggests new directions and attempts to gain some insights for better understanding of the biosynthesis and regulation of DAPG. The combination of traditional biochemistry and molecular biology with new systems biology and synthetic biology tools will provide a better view of phloroglucinol compound biosynthesis and a greater potential of microbial production.  相似文献   

7.
When autotrophically growing cultures of Chlorella are treated with levulinic acid, delta-aminolevulinic acid is excreted into the medium, providing a direct demonstration of alpha-aminolevulinic acid production in a green plant. Evidence is presented which indicates that alpha-aminolevulinic acid formation may be the the rate-controlling step of chlorophyll synthesis in Chlorella, and that control of the rate of alpha-aminolevulinic acid synthesis may be exerted at the level of production and breakdown of an enzyme which catalyzes its formation.  相似文献   

8.
Defensins are antimicrobial peptides that are important in the innate immune defense of mammals. Upon stimulation by bacterial antigens, enteric α-defensins are secreted into the intestinal lumen where they have potent microbicidal activities. Cryptdin-4 (Crp4) is an α-defensin expressed in Paneth cells of the mouse small intestine and the most bactericidal of the known cryptdin isoforms. The structure of Crp4 consists of a triple-stranded antiparallel β-sheet but lacks three amino acids between the fourth and fifth cysteine residues, making them distinct from other α-defensins. The structure also reveals that the α-amino and C-terminal carboxylic groups are in the proximity of each other (d ≈ 3 ?) in the folded structure. We present here the biosynthesis of backbone-cyclized Crp4 using a modified protein splicing unit or intein. Our data show that cyclized Crp4 can be biosynthesized by using this approach both in vitro and in vivo, although the expression yield was significantly lower when the protein was produced inside the cell. The resulting cyclic defensins retained the native α-defensin fold and showed equivalent or better microbicidal activities against several Gram-positive and Gram-negative bacteria when compared to native Crp4. No detectable hemolytic activity against human red blood cells was observed for either native Crp4 or its cyclized variants. Moreover, both forms of Crp4 also showed high stability to degradation when incubated with human serum. Altogether, these results indicate the potential for backbone-cyclized defensins in the development of novel peptide-based antimicrobial compounds.  相似文献   

9.
The biosynthesis of δ-aminolevulinic acid was investigated in three strains of Rhodopseudomonas sphaeroides. A wild-type strain (NCIB 8253) possessed both δ-aminolevulinic acid synthetase and γ,δ-dioxovaleric acid transaminase in the cytoplasmic and membrane cell fractions. δ-Aminolevulinic acid synthetase activities were not detected in extracts of mutant strains H5 and H5D. However, γ,δ-dioxovaleric acid transaminase was found in the cytoplasmic and membrane fractions of these latter two strains. Strain H5 required exogenously added δ-aminolevulinic acid for growth and bacteriochlorophyll synthesis. Strain H5D did not require this compound for growth and bacteriochlorophyll synthesis. γ,δ-Dioxovaleric acid added in the growth medium did not support the growth of H5, although it was actively transported into the cells. Addition of γ,δ-dioxovaleric acid to the growth medium did not enhance the growth of either the wild-type or H5D strains. These results indicate that ALA synthetase is not required for growth and bacteriochlorophyll synthesis in H5D and that γ,δ-dioxovaleric acid is probably not an intermediate in the formation of δ-aminolevulinic acid in the strains of Rhodopseudomonas sphaeroides studied. In strain H5D another pathway may function in the formation of δ-aminolevulinic acid other than that catalyzed by δ-aminolevulinic acid synthetase or γ,δ-dioxovaleric acid transaminase.  相似文献   

10.
To search precursors of ethylene in banana fruits, ethylene formation from acetate-2-14C and fumarate-2,3-14C by banana slices was studied. Ethylene-14C formation from acetate-2-l4C was reduced by the addition of malonate or β-hydroxypropionate, and it was enhanced in a sealed chamber in comparison with the case in an aeration chamber. No label of fumarate-2,3-14C was incorporated into ethylene.

From these facts it was suggested that acetate-2-14C was incorporated into ethylene via malonate and β-hydroxypropionate. Participation of fumarate in ethylene biosynthesis of banana fruits was ruled out. β-Hydroxypropionate was postulated as an effective precursor of ethylene formation from acetate-2-l4C.  相似文献   

11.
12.
Intact, isolated spinach chloroplasts incorporated 14C from 14CO2 into plastoquinone and β-carotene under photosynthetic conditions. Addition of unlabelled l-tyrosine, p-hydroxyphenylpyruvate, or homogentisate increased the incorporation of 14C into plastoquinone, but decreased that into β-carotene.  相似文献   

13.
Vogl K  Bryant DA 《Geobiology》2012,10(3):205-215
Purple sulfur bacteria (PSB) mainly occur in anoxic aquatic and benthic environments, where they play important roles in cycling carbon and sulfur. Many PSB characteristically produce the unique keto-carotenoid, okenone, which is important not only for its light absorption and photoprotection properties but also because of its diagenesis product, okenane, which is a biomarker for ancient sediments derived from anoxic environments. The specific methylation pattern of the χ-ring of okenane is unlikely to be formed by diagenetic processes and should therefore reflect an enzymatic activity from okenone biosynthesis. This study describes two enzymes that produce the χ-ring of okenone, the only structural element of okenone preserved in okenane. Genes encoding enzymes of carotenogenesis were identified in the draft genome sequence of an okenone-producing PSB, Thiodictyon sp. strain CAD16. Two divergently transcribed genes encoded a CrtY-type lycopene cyclase and a CrtU/CruE-type γ-carotene desaturase/methyltransferase. Expression of crtY in Escherichia coli showed that this gene encoded a lycopene cyclase that produced γ-carotene as the only product. Although the sequence of the γ-carotene desaturase/methyltransferase was more similar to CrtU sequences of green sulfur bacteria than to CruE sequences of cyanobacteria, expression of the crtU gene in Chlorobaculum tepidum showed that the enzyme produced carotenoids with χ-rings rather than φ-rings. Phylogenetic analysis of the carotene desaturase/methyltransferases revealed that enzymes capable of converting β-rings to χ-rings have independently evolved at least two times. These results indicate that it probably will not be possible to deduce the activity of carotene desaturase/methyltransferases solely from sequence data.  相似文献   

14.
The inhibition of aflatoxin production by trifluoperazine, an anticalmodulin (CaM) agent and the relevance of Ca2+/CaM-dependent phosphorylation and dephosphorylation during aflatoxin biosynthesis was previously reported. To identify proteins that may be regulated by CaM, an in silico analysis for putative CaM-binding domains (CaMBDs) in the aflatoxin-related proteins of Aspergillus parasiticus was performed using the CaM target database. Interestingly, the key regulators of aflatoxin biosynthesis such as AflR and AflJ contained predicted CaMBDs at their C-termini. Furthermore, potential phosphorylation sites for CaM-kinase II were present within these CaMBDs. In addition to other aflatoxin biosynthesis enzymes—such as Vbs, DmtA and OmtA, and the VeA protein (known to regulate the expression of AflJ and AflR)—also showed the presence of putative CaMBDs. Although the present report reaffirms earlier observations on CaM-mediated regulation of aflatoxin biosynthesis, it also opens new avenues for identifying the specific targets of CaM and elucidating the exact mechanism of initiation and regulation of aflatoxin biosynthesis.  相似文献   

15.
16.
The sialyl-α2,6-lactosaminyl-structure: Biosynthesis and functional role   总被引:1,自引:0,他引:1  
Sialylation represents one of the most frequently occurring terminations of the oligosaccharide chains of glycoproteins and glycolipids. Sialic acid is commonly found ,3- or ,6-linked to galactose (Gal), ,6-linked to N-acetylgalactosamine (GalNAc) or ,8-linked to another sialic acid. The biosynthesis of the various linkages is mediated by the different members of the sialyltransferase family. The addition of sialic acid in ,6-linkage to the galactose residue of lactosamine (type 2 chains) is catalyzed by -galactoside ,6-sialyltransferase (ST6Gal.I). Although expressed by a single gene, this enzyme shows a complex pattern of regulation which allows its tissue- and stage-specific modulation. The cognate oligosaccharide structure, NeuAc,6Gal1,4GIcNAc, is widely distributed among tissues and is involved in biological processes such as the regulation of the immune response and the progression of colon cancer. This review summarizes the current knowledge on the biochemistry of ST6Gal.I and on the functional role of the sialyl-,6-lactosaminyl structure.  相似文献   

17.
Fruits of tomato incorporated [2-14C]mevalonic acid lactone into the steroidal glycoalkaloid α-tomatine. Young fruits showed the greatest alkaloid-synthesizing ability but this decreased as the fruits developed. Analysis of sap exuded from fruit stalks and also application of[4-14C]cholesterol to leaves confirmed that tomatine is not transported into fruits from vegetative organs. Accumulation of this alkaloid in fruits thus appears entirely due to synthesis. Excised fruits of all developmental stages degraded injected [14C]tomatine and rates were directly related to fruit age. The pattern of accumulation/decline in fruit tomatine may be explicable on the basis of changing capacity for synthesis/degradation during development. Label from injected [14C]tomatine was present mainly in chlorophylls and carotenoids where it increased with time as that in tomatine decreased. The significance of the relationship between tomatine disappearance and carotenoid development is briefly discussed. The aglycone tomatidine was not detected in green fruits but a Δ16-5α-pregnenolone-like compound was.  相似文献   

18.
The extremely thermophilic, obligately aerobic bacterium Sulfolobus solfataricus forms the tetrapyrrole precursor, -aminolevulinic acid (ALA), from glutamate by the tRNA-dependent five-carbon pathway. This pathway has been previously shown to occur in plants, algae, and most prokaryotes with the exception of the -group of proteobacteria (purple bacteria). An alternative mode of ALA formation by condensation of glycine and succinyl-CoA occurs in animals, yeasts, fungi, and the -proteobacteria. Sulfolobus and several other thermophilic, sulfur-dependent bacteria, have been variously placed within a subgroup of archaea (archaebacteria) named crenarchaeotes, or have been proposed to comprise a distinct prokaryotic group designated eocytes. On the basis of ribosomal structure and certain other criteria, eocytes have been proposed as predecessors of the nuclear-cytoplasmic descent line of eukaryotes. Because aplastidic eukaryotes differ from most prokaryotes in their mode of ALA formation, and in view of the proposed affiliation of eocytes to eukaryotes, it was of interest to determine how eocytes form ALA. Sulfolobus extracts were able to incorporate label from [1-14C]glutamate, but not from [2-14C]glycine, into ALA. Glutamate incorporation was abolished by preincubation of the extract with RNase. Sulfolobus extracts contained glutamate-1-semialdehyde aminotransferase activity, which is indicative of the five-carbon pathway. Growth of Sulfolobus was inhibited by gabaculine, a mechanism-based inhibitor of glutamate-1-semialdehyde aminotransferase, an enzyme of the five-carbon ALA biosynthetic pathway. These results indicate that Sulfolobus uses the five-carbon pathway for ALA formation.Abbreviations AHA 4-amino-5-hexynoic acid - ALA -aminolevulinic acid, Gabaculine, 3-amino-2,3-dihydrobenzoic acid - GSA glutamate 1-semialdehyde  相似文献   

19.
Biosynthesis of C30 carotenoids is relatively restricted in nature but has been described in Staphylococcus and in methylotrophic bacteria. We report here identification of a novel gene (crtNb) involved in conversion of 4,4′-diapolycopene to 4,4′-diapolycopene aldehyde. An aldehyde dehydrogenase gene (ald) responsible for the subsequent oxidation of 4,4′-diapolycopene aldehyde to 4,4′-diapolycopene acid was also identified in Methylomonas. CrtNb has significant sequence homology with diapophytoene desaturases (CrtN). However, data from knockout of crtNb and expression of crtNb in Escherichia coli indicated that CrtNb is not a desaturase but rather a novel carotenoid oxidase catalyzing oxidation of the terminal methyl group(s) of 4,4′-diaponeurosporene and 4,4′-diapolycopene to the corresponding terminal aldehyde. It has moderate to low activity on neurosporene and lycopene and no activity on β-carotene or ζ-carotene. Using a combination of C30 carotenoid synthesis genes from Staphylococcus and Methylomonas, 4,4′-diapolycopene dialdehyde was produced in E. coli as the predominant carotenoid. This C30 dialdehyde is a dark-reddish purple pigment that may have potential uses in foods and cosmetics.  相似文献   

20.
ABSTRACT

Biosynthesis of β -lactam antibiotics by fungi and actinomycetes is markedly affected by compounds containing nitrogen. The different processes employed by the spectrum of microbes capable of making these valuable compounds are affected differently by particular compounds. Ammonium ions, except at very low concentrations, exert negative effects via nitrogen metabolite repression, sometimes involving the nitrogen regulatory gene nre. Certain amino acids are precursors or inducers, whereas others are involved in repression and, in certain cases, as inhibitors of biosynthetic enzymes and of enzymes supplying precursors. The most important amino acids from the viewpoint of regulation are lysine, methionine, glutamate and valine. Surprisingly, diamines such as diaminopropane, putrescine and cadaverine induce cephamycin production by actinomycetes. In addition to penicillins and cephalosporins made by fungi and cephamycins made by actinomycetes, other β-lactams are made by actinomycetes and unicellular bacteria. These include clavams (e.g., clavulanic acid), carbapenems (e.g., thienamycin), nocardicins and monobactams. Here also, amino acids are precursors and inhibitors, but only little is known about regulation. In the case of the simplest carbapenem made by unicellular bacteria, i.e., 1-carba-2-em-3-carboxylic acid, quorum sensors containing homoserine lactone are inducers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号