共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming Growth Factor--beta (TGFβ) superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs), and Bone Morphogenetic Proteins (BMPs), are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer), to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values. 相似文献
2.
3.
The adult midbrain contains 75 % of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson’s disease. Despite 50 years of investigation, treatment for Parkinson’s disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson’s disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed. 相似文献
4.
5.
6.
7.
Latent TGFβ binding proteins are extracellular matrix proteins that bind latent TGFβ to form the large latent complex. Nonsynonymous polymorphisms in LTBP4, a member of the latent TGFβ binding protein gene family, have been linked to several human diseases, underscoring the importance of TGFβ regulation for a range of phenotypes. Because of strong linkage disequilibrium across the LTBP4 gene, humans have two main LTBP4 alleles that differ at four amino acid positions, referred to as IAAM and VTTT for the encoded residues. VTTT is considered the “risk” allele and associates with increased intracellular TGFβ signaling and more deleterious phenotypes in muscular dystrophy and other diseases. We now evaluated LTBP4 nsSNPs in dilated cardiomyopathy, a distinct disorder associated with TGFβ signaling. We stratified based on self-identified ethnicity and found that the LTBP4 VTTT allele is associated with increased risk of dilated cardiomyopathy in European Americans extending the diseases that associate with LTBP4 genotype. However, the association of LTBP4 SNPs with dilated cardiomyopathy was not observed in African Americans. To elucidate the mechanism by which LTBP4 genotype exerts this differential effect, TGFβ’s association with LTBP4 protein was examined. LTBP4 protein with the IAAM residues bound more latent TGFβ compared to the LTBP4 VTTT protein. Together these data provide support that LTBP4 genotype exerts its effect through differential avidity for TGFβ accounting for the differences in TGFβ signaling attributed to these two alleles. 相似文献
8.
Jie Zhu Edward L. Braun Satomi Kohno Monica Antenos Eugene Y. Xu Robert W. Cook S. Jack Lin Brandon C. Moore Louis J. Guillette Jr Theodore S. Jardetzky Teresa K. Woodruff 《PloS one》2010,5(3)
Transforming growth factor-beta (TGFβ) homologues form a diverse superfamily that arose early in animal evolution and control cellular function through membrane-spanning, conserved serine-threonine kinases (RII and RI receptors). Activin and inhibin are related dimers within the TGFβ superfamily that share a common β-subunit. The evolution of the inhibin α-subunit created the only antagonist within the TGFβ superfamily and the only member known to act as an endocrine hormone. This hormone introduced a new level of complexity and control to vertebrate reproductive function. The novel functions of the inhibin α-subunit appear to reflect specific insertion-deletion changes within the inhibin β-subunit that occurred during evolution. Using phylogenomic analysis, we correlated specific insertions with the acquisition of distinct functions that underlie the phenotypic complexity of vertebrate reproductive processes. This phylogenomic approach presents a new way of understanding the structure-function relationships between inhibin, activin, and the larger TGFβ superfamily. 相似文献
9.
10.
11.
12.
13.
14.
Mark J. Truty Gwen Lomberk Martin E. Fernandez-Zapico Raul Urrutia 《The Journal of biological chemistry》2009,284(10):6291-6300
15.
Tijs van Wieringen Sebastian Kalamajski ?sa Lidén Dominique Bihan Bengt Guss Dick Heineg?rd Richard W. Farndale Kristofer Rubin 《The Journal of biological chemistry》2010,285(46):35803-35813
Collagen fibers expose distinct domains allowing for specific interactions with other extracellular matrix proteins and cells. To investigate putative collagen domains that govern integrin αVβ3-mediated cellular interactions with native collagen fibers we took advantage of the streptococcal protein CNE that bound native fibrillar collagens. CNE specifically inhibited αVβ3-dependent cell-mediated collagen gel contraction, PDGF BB-induced and αVβ3-mediated adhesion of cells, and binding of fibronectin to native collagen. Using a Toolkit composed of overlapping, 27-residue triple helical segments of collagen type II, two CNE-binding sites present in peptides II-1 and II-44 were identified. These peptides lack the major binding site for collagen-binding β1 integrins, defined by the peptide GFOGER. Peptide II-44 corresponds to a region of collagen known to bind collagenases, discoidin domain receptor 2, SPARC (osteonectin), and fibronectin. In addition to binding fibronectin, peptide II-44 but not II-1 inhibited αVβ3-mediated collagen gel contraction and, when immobilized on plastic, supported adhesion of cells. Reduction of fibronectin expression by siRNA reduced PDGF BB-induced αVβ3-mediated contraction. Reconstitution of collagen types I and II gels in the presence of CNE reduced collagen fibril diameters and fibril melting temperatures. Our data indicate that contraction proceeded through an indirect mechanism involving binding of cell-produced fibronectin to the collagen fibers. Furthermore, our data show that cell-mediated collagen gel contraction does not directly depend on the process of fibril formation. 相似文献
16.
Fernando Porcelli Cristina Olivieri Larry R. Masterson Yi Wang Gianluigi Veglia 《Journal of biological inorganic chemistry》2011,16(8):1197-1204
Metal centers have been widely used to nucleate secondary structures in linear peptides. However, very few examples have been reported for peptide/organometal complexes. Here, we illustrate the use of organotin compounds as nucleation centers for secondary structures of linear peptide inhibitors of ??-amylase. Specifically, we utilized methyl-substituted tin compounds to template short type I ??-turns similar to the binding loop of tendamistat, the natural inhibitor of the enzyme, which are able to bind and inhibit ??-amylase. We show that enzyme activity is inhibited by neither the unstructured peptide nor the organotin compounds, but rather the peptide/organotin complex, which inhibits the enzyme with K i?~?0.5???M. The results delineate a strategy to use organometallic compounds to drive the active conformation in small linear peptides. 相似文献
17.
18.
19.