首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to investigate the effect of wearing graduated compression garments during recovery on subsequent 40-km time trial performance. In a randomized single-blind crossover experiment, 14 trained multisport male athletes (mean ± SD: age 33.8 ± 6.8 years, 40-km time 66:11 ± 2:10 minutes:seconds) were given a graduated full-leg-length compressive garment (76% Meryl Elastane, 24% Lycra) or a similar-looking noncompressive placebo garment (92% Polyester, 8% Spandex) to wear continuously for 24 hours after performing an initial 40-km time trial in their normal cycling attire. After the 24-hour recovery period, the compression (or placebo) garments were removed, and a second 40-km time trial was then completed to gauge the effect of each garment on subsequent performance. One week later, the groups were reversed and testing procedures repeated. The participant's hydration status, nutritional intake, and training were similar before each set of trials. Performance time in the second time trial was substantially improved with compression compared with placebo garments (1.2 ± 0.4%, mean ± 90% confidence interval). This improvement resulted in a substantially higher average power output after wearing the compression garment compared with that after wearing the placebo garment (3.3 ± 1.1%). Differences in oxygen cost and rating of perceived exertion between groups were trivial or unclear. The wearing of graduated compressive garments during recovery is likely to be worthwhile and unlikely to be harmful for well-trained endurance athletes.  相似文献   

2.
The human hip joint is normally represented as a spherical hinge and its centre of rotation is used to construct femoral anatomical axes and to calculate hip joint moments. The estimate of the hip joint centre (HJC) position using a functional approach is affected by stereophotogrammetric errors and soft tissue artefacts. The aims of this study were (1) to assess the accuracy with which the HJC position can be located using stereophotogrammetry and (2) to investigate the effects of hip motion amplitude on this accuracy. Experiments were conducted on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and femur, and eight skin markers were attached to the thigh. Recordings were made while an operator rotated the hip joint exploiting the widest possible range of motion. For HJC determination, a proximal and a distal thigh skin marker cluster and two recent analytical methods, the quartic sphere fit (QFS) method and the symmetrical centre of rotation estimation (SCoRE) method, were used. Results showed that, when only stereophotogrammetric errors were taken into account, the analytical methods performed equally well. In presence of soft tissue artefacts, HJC errors highly varied among subjects, methods, and skin marker clusters (between 1.4 and 38.5 mm). As expected, larger errors were found in the subject with larger soft tissue artefacts. The QFS method and the distal cluster performed generally better and showed a mean HJC location accuracy better than 10 mm over all subjects. The analysis on the effect of hip movement amplitude revealed that a reduction of the amplitude does not improve the HJC location accuracy despite a decrease of the artefact amplitude.  相似文献   

3.
A primary source of measurement error in gait analysis is soft-tissue artefact. Hip and knee angle measurements, regularly used in clinical decision-making, are particularly prone to pervasive soft tissue on the femur. However, despite several studies of thigh marker artefact it remains unclear how lateral thigh marker height affects results using variants of the Conventional Gait Model. We compared Vicon Plug-in Gait hip and knee angle estimates during gait using a proximal and distal thigh marker placement for ten healthy subjects. Knee axes were estimated by optimizing thigh rotation offsets to minimize knee varus-valgus range during gait. Relative to the distal marker, the proximal marker produced 37% less varus-valgus range and 50% less hip rotation range (p < 0.001), suggesting that it produced less soft-tissue artefact in knee axis estimates. The thigh markers also produced different secondary effects on the knee centre estimate. Using whole gait cycle optimization, the distal marker showed greater minimum and maximum knee flexion (by 6° and 2° respectively) resulting in a 4° reduction in range. Mid-stance optimization reduced distal marker knee flexion by 5° throughout, but proximal marker results were negligibly affected. Based on an analysis of the Plug-in Gait knee axis definition, we show that the proximal marker reduced sensitivity to soft-tissue artefact by decreasing collinearity between the points defining the femoral frontal plane and reducing anteroposterior movement between the knee and thigh markers. This study suggests that a proximal thigh marker may be preferable when performing gait analysis using the Plug-in Gait model.  相似文献   

4.
This article describes a method that allows estimating, with the 2D version of the direct linear transformation (DLT), the actual 2D coordinates of a point when the latter is not strictly in the calibration plane. Markers placed in vertical line, above, below and in the centre of a horizontal calibration plane were filmed by a moving camera. Without correction, strong errors (up to 64.5%) were noticed for markers out of the calibration plane. After correction, calculated coordinates were consistent with actual values (error < 0.55%). The method was then applied to slip distance measurement, using a marker fixed on the hoof of a horse trotting on a calibrated track while being followed with a camera. The correction effect represented 6.6% of slip distance. Combined with the 2D-DLT transformation, the proposed corrective method allows an accurate measurement of slip distances, for high-speed outdoor locomotion analysis, using a moving camera.  相似文献   

5.
In landings from a flight phase the mass centre of an athlete experiences rapid decelerations. This study investigated the extent to which co-contraction is beneficial or necessary in drop landings, using both experimental data and computer simulations. High speed video and force recordings were made of an elite martial artist performing drop landings onto a force plate from heights of 1.2, 1.5 and 1.8 m. Matching simulations of these landings were produced using a planar 8-segment torque-driven subject-specific computer simulation model. It was found that there was substantial co-activation of joint flexor and extensor torques at touchdown in all three landings. Optimisations were carried out to determine whether landings could be effected without any co-contraction at touchdown. The model was not capable of landing from higher than 1.05 m with no initial flexor or extensor activations. Due to the force–velocity properties of muscle, co-contraction with net zero joint torque at touchdown leads to increased extensor torque and decreased flexor torque as joint flexion velocity increases. The same considerations apply in any activity where rapid changes in net joint torque are required, as for example in jumps from a running approach.  相似文献   

6.
The aim of the present study was to evaluate the possibility of mobilizing calvarial bone with a fully implantable and bioresorbable device. The animal model used was the New Zealand white rabbit (n = 12). An island bone flap attached to the dura mater was created in the parietal region and amalgam markers were placed in this bone flap and in the ipsilateral frontal bone. In one group of six rabbits (group 1), a specially processed contractile 70L/30D,L polylactic acid plate, 15 x 6 x 0.6 mm, was attached to the island flap by one extremity, and to the fixed ipsilateral frontal bone by the other. In group 2 (control), no plate was added. Bone marker movement was followed with serial radiography. In group 1, there was a progressive reduction in mean marker distance over the first 48 hours, and stability thereafter. In group 2 (control), mean marker distance remained stable until the second postoperative week, after which time there was a slight increase until the end of the experimental period. At 4 weeks, the mean marker separation differed significantly between group 1 (mean, -3.62 mm; SD, 0.79 mm) and group 2 (mean, 0.34 mm; SD, 0.14 mm; p <0.001). In conclusion, a totally implantable and bioresorbable device was successfully used to mobilize calvarial bone. Polymer contractility will likely constitute the basis of a new generation of bioresorbable distractors for use in craniofacial surgery.  相似文献   

7.
When measuring knee kinematics with skin-mounted markers, soft tissue and structures surrounding the knee hide the actual underlying segment kinematics. Soft-tissue artefacts can be reduced when plate-mounted markers or marker trees are used instead of individual unconstrained mounted markers. The purpose of this study was to accurately quantify the soft-tissue artefacts and to compare two marker cluster fixation methods by using fluoroscopy of knee motion after total knee arthroplasty during a step-up task. Ten subjects participated 6 months after their total knee arthroplasty. The patients were randomised into (1) a plate-mounted marker group and (2) a strap-mounted marker group. Fluoroscopic data were collected during a step-up motion. A three-dimensional model fitting technique was used to reconstruct the in vivo 3-D positions of the markers and the implants representing the bones. The measurement errors associated with the thigh were generally larger (maximum translational error: 17mm; maximum rotational error 12 degrees ) than the measurement errors for the lower leg (maximum translational error: 11mm; maximum rotational error 10 degrees ). The strap-mounted group showed significant more translational errors than the plate-mounted group for both the shank (respectively, 3+/-2.2 and 0+/-2.0mm, p = 0.025) and the thigh (2+/-2.0 and 0+/-5.9mm, p = 0.031). The qualitative conclusions based on interpretation of the calculated estimates of effects within the longitudinal mixed-effects modelling evaluation of the data for the two groups (separately) were effectively identical. The soft-tissue artefacts across knee flexion angle could not be distinguished from zero for both groups. For all cases, recorded soft-tissue artefacts were less variable within subjects than between subjects. The large soft-tissue artefacts, when using clustered skin markers, irrespective of the fixation method, question the usefulness of parameters found with external movement registration and clinical interpretation of stair data in small patient groups.  相似文献   

8.
The use of compression garments in treating lymphedema following treatment of genital (penis, testes, uterus, cervical) and breast cancer treatment is a well-established practice. Although compression garments are classified in compression classes, little is known about the actual subgarment pressure exerted along the extremity. The aims of this study were to establish an in vitro method for measuring subgarment pressure along the extremity and to analyze initial and over time subgarment pressure of compression garments from three manufacturers. The measurements were performed with I-scan(?) (Tekscan Inc.) pressure measuring equipment once a week during a period of 4 weeks. Wear and tear was simulated by washing and putting on the garments on plastic legs every day. There was a statistically significant difference between the garments of some of manufacturers. There was no difference between garments from the same manufacturer. No significant decrease of subgarment pressure was observed during the trial period. The study demonstrated that Tekscan pressure-measuring equipment could measure subgarment pressure in vitro. The results may indicate that there was a difference in subgarment pressure exerted by garments from different manufacturers and that there was no clear decrease in subgarment pressure during the first four weeks of usage.  相似文献   

9.
Few ankle inversion studies have taken anticipation bias into account or collected data with an experimental design that mimics actual injury mechanisms. Twenty-three participants performed randomized single-leg vertical drop landings from 20 cm. Subjects were blinded to the landing surface (a flat force plate or 30° inversion wedge on the force plate). After each trial, participants reported whether they anticipated the landing surface. Participant responses were validated with EMG data. The protocol was repeated until four anticipated and four unanticipated landings onto the inversion wedge were recorded. Results revealed a significant main effect for landing condition. Normalized vertical ground reaction force (% body weights), maximum ankle inversion (degrees), inversion velocity (degrees/second), and time from contact to peak muscle activation (seconds) were significantly greater in unanticipated landings, and the time from peak muscle activation to maximum VGRF (second) was shorter. Unanticipated landings presented different muscle activation patterns than landings onto anticipated surfaces, which calls into question the usefulness of clinical studies that have not controlled for anticipation bias.  相似文献   

10.
The present study assesses the accuracy with which the subject specific coordinates of the hip joint centre (HJC) in a pelvic anatomical frame can be estimated using different methods. The functional method was applied by calculating the centre of the best sphere described by the trajectory of markers placed on the thigh during several trials of hip rotations. Different prediction methods, proposed in the literature and in the present investigation, which estimate the HJC of adult subjects using regression equations and anthropometric measurements, were also assessed. The accuracy of each of the above-mentioned methods was investigated by comparing their predictions with measurements obtained on a sample of 11 male adult able-bodied volunteers using roentgen stereophotogrammetric analysis (RSA), assumed to provide the true HJC locations. Prediction methods estimated the HJC location at an average rms distance of 25-30 mm. The functional method performed significantly better and estimated HJCs within a rms distance of 13 mm on average. This result may be confidently generalised if the photogrammetric experiment is carefully conducted and an optimal analytical approach used. The method is therefore suggested for use in motion analysis when the subject's hip range of motion is not limited. In addition, the facts that it is not an invasive technique and that it has relatively small and un-biased errors, make it suitable for regression equations identification with no limit to sample size and population typology.  相似文献   

11.
While the capabilities of land-based motion capture systems in biomechanical applications have been previously reported, the possibility of using motion tracking systems externally to reconstruct markers submerged inside an aquatic environment has been under explored. This study assesses the ability of a motion capture system (Vicon T40s) arranged externally to track a retro-reflective marker inside a glass tank filled with water and without water. The reflective tape used for marker creation in this study was of Safety of Life at Sea (SOLAS) grade as the conventional marker loses its reflective properties when submerged. The overall trueness calculated based on the mean marker distance errors, varied between 0.257 mm and 0.290 mm in different mediums (air, glass and water). The overall precision calculated based on mean standard deviation of mean marker distances at different locations varied between 0.046 mm and 0.360 mm in different mediums. Our results suggest, that there is no significant influence of the presence of water on the overall static accuracy of the marker center distances when markers were made of SOLAS grade reflective tape. Using optical motion tracking systems for evaluating locomotion in aquatic environment can help to better understand the effects of aquatic therapy in clinical rehabilitation, especially in scenarios that involve equipment, such as an underwater treadmill which generally have constrained capture volumes for motion capture.  相似文献   

12.
Simulation models of human movement comprising pin-linked segments have a potential weakness for reproducing accurate ground reaction forces during high impact activities. While the human body contains many compliant structures such a model only has compliance in wobbling masses and in the foot-ground interface. In order to determine whether accurate GRFs can be produced by allowing additional compliance in the foot-ground interface, a subject-specific angle-driven computer simulation model of triple jumping with 13 pin-linked segments was developed, with wobbling masses included within the shank, thigh, and trunk segments. The foot-ground interface was represented by spring-dampers at three points on each foot: the toe, ball, and heel. The parameters of the spring-dampers were varied by a genetic algorithm in order to minimise the differences between simulated GRFs, and those measured from the three phases of a triple jump in three conditions: (a) foot spring compression limited to 20 mm; (b) this compression limited to 40 mm; (c) no restrictions. Differences of 47.9%, 15.7%, and 12.4% between simulation and recorded forces were obtained for the 20 mm, 40 mm, and unrestricted conditions, respectively. In the unrestricted condition maximum compressions of between 43 mm and 56 mm were obtained in the three phases and the mass centre position was within 4mm of the actual position at these times. It is concluded that the unrestricted model is appropriate for simulating performance whereas the accurate calculation of internal forces would require a model that incorporates compliance elsewhere in the link system.  相似文献   

13.
When performing CT examinations on pregnant patients, great effort should be dedicated towards optimising the exposure of the mother and the conceptus. For this purpose, many radiology departments use high-Z garments to be wrapped around the patient's lower abdomen for out-of-plane organ shielding to protect the fetus. To assess their current protection efficiency, we performed a literature review and compared the efficiencies mentioned in the literature to Monte-Carlo calculations of CT protocols for which the overall scan length was reduced. We found 11 relevant articles, all of them reporting uterus exposure due to CT imaging performed for exclusion of pulmonary embolism, one of the leading causes of peripartum deaths in western countries. Uterus doses ranged between 60 and 660 µGy per examination, and relative dose reductions to the uterus due to high-Z garments were between 20 and 56%. Calculations showed that reducing the scan length by one to three centimetres could potentially reduce uterus dose up to 24% for chest imaging, and even 47% for upper abdominal imaging. These dose reductions were in the order of those achieved by high-Z garments. However, using the latter may negatively influence the diagnostic image quality and even interfere with the automatic exposure control system thus increasing patient dose if positioned in the primary beam, for example in the overranging length in helical acquisition. We conclude that efforts should be concentrated on positioning the patient correctly in the gantry and optimising protocol parameters, rather than using high-Z garments for out-of-plane uterus shielding.  相似文献   

14.
The distribution of RAPD markers was compared with that of RFLP markers in a high density linkage map of sugar beet. The same mapping population of 161 F2 individuals was used to generate all the marker data. The total map comprises 160 RAPD and 248 RFLP markers covering 508 cM. Both the RAPD and the RFLP markers show a high degree of clustering over the nine linkage groups. The pattern is compatible with a strong distal localization of recombination in the sugar beet. It leads generally to one major cluster of markers in the centre of each linkage group. In regions of high marker density, dominant RAPD markers present in either linkage phase and codominant RFLP markers are subclustered relative to each other. This phenomenon is shown to be attributable to: (i) effects of the mapping procedure when dominant and codominant data are combined, (ii) effects of the mapping procedure when dominant data in both linkage phases are combined, and (iii) genuine differences in the way RAPD and RFLP markers are recruited.  相似文献   

15.
The aim of the present study was to verify the influence of distance between obstacles in combination for free jumping test on linear and temporal kinematic parameters of the jump. Investigated groups of halfbred stallions being prepared for 100 days performance test (two groups, 36 horses in total) were filmed on different distances between main doublebarre obstacle and last cross-pole in the jumping lane. Both groups of horses were filmed during their regular work in the same training centre 1 week before performance test. Jumping parameters were obtained on the same size of the obstacle. Data were analysed separately for both groups by analysis of variance. On the basis of the conducted study, it is possible to conclude that in the range of the most popular free jumping distance horses may use different jumping techniques to clear the jump. The shorter distances between last two obstacles in the jumping lane in the range of 6.8 to 7.1 m stimulate higher jumps; however, the reaction of horses was not exactly the same for all measured jumping parameters.  相似文献   

16.
The first linkage map established by Lanaud et al. (1995) was used as a starting point to produce a high-density molecular linkage map. A mapping population of 181 progenies resulting from a cross between two heterozygous genotypes, a Forastero and a Trinitario (hybrid between Forastero and Criollo), was used for the linkage analysis. A new DNA isolation protocol was established, which allows enough good quality DNA to construct a genetic map with PCR-based markers. The map comprises 424 markers with an average spacing between markers of 2.1 cM. The marker types used were five isozymes, six loci from known function genes, 65 genomic RFLPs, 104 cDNA RFLPs, three telomeric probes, 30 RAPDs, 191 AFLPs and 20 microsatellites. The use of new marker types, AFLP and microsatellites, did not disturb the original order of the RFLP loci used on the previous map. The genetic markers were distributed over ten linkage groups and cover 885.4 cM. The maximum distance observed between adjacent markers was 16.2 cM, and 9.4% of all loci showed skewed segregation. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

17.
Drop landings and drop jumps are common training exercises and injury research model tasks. Drop landings have a single landing, whereas drop jumps include a subsequent jump after initial landing. With the expected ground impact, instant and landing surface suggested to modulate landing neuromechanics, muscle activity, and kinetics should be the same in both tasks when landing from the same height onto the same surface. Although previous researchers have noted some differences between these tasks across separate studies, little research has compared these tasks in the same study. Thus, we examined whether a subsequent movement after initial landing alters muscle activity and kinetics between drop landings and jumps. Fifteen women performed 10 drop landings and drop jumps each from 45 cm. Muscle onsets and integrated muscle activation amplitudes 150 milliseconds before (preactivity) and after landing (postactivity) in the medial and lateral quadriceps, hamstrings, and lateral gastrocnemius and peak and time-to-peak vertical ground reaction forces were examined across tasks (p ≤ 0.05). When performing drop jumps, subjects demonstrated later (p = 0.02) gastrocnemius and lesser lateral gastrocnemius (p = 0.002) and medial quadriceps (p = 0.02) preactivity followed by increased postactivity in all muscles (p = 0.006), with higher peak vertical ground reaction forces (p = 0.04) but no differences in times to these peaks (p = 0.60) than drop landings. The later gastrocnemius activation, higher gastrocnemius and quadriceps postlanding amplitudes, and higher ground reaction forces in drop jumps may allow subjects to propel the body vertically after the initial landing vs. simply absorbing impact in drop landings. Our results indicate that in addition to landing surface and height, anticipation of a subsequent task changes landing neuromechanics. Generalizations of results from landing-only studies should not be made with landing followed-by-subsequent-activity studies. Landing exercises should be incorporated based on sport-specific demands.  相似文献   

18.
Purpose: Athletes and military service members are known to undergo strenuous exercise and sometimes have to take long haul flights soon afterwards; however, its combined effect on many physiological functions is relatively unknown. Therefore, we examined the combined effects of a full-body muscle-damaging workout and transcontinental flight on coagulation and fibrinolysis in healthy, resistance trained men. We also determined the efficacy of a full-body compression garment in limiting their coagulation responses. Materials and Methods: Nineteen healthy, resistance trained men flew from Connecticut (CT) to California (CA), performed a full-body muscle-damaging workout and then flew back to CT. Ten participants wore full-body compression garments (FCG) for the duration of both flights and during all other portions of the study except during workouts and blood draws, when they wore loose clothing. Nine controls wore loose clothing (CON) throughout the study. Blood samples were collected at 16 h and 3 h before the initial flight from CT, immediately after landing in CA, immediately before and immediately after the full-body workout in CA, immediately after landing in CT, and at 29 h after landing in CT. Plasma markers of coagulation included activated partial thromboplastin time (aPTT), prothrombin fragment 1+2 (PTF 1+2) and thrombin ant-thrombin (TAT). Markers of the fibrinolytic system included the tissue plasmigen activator (tPA), plasminogen activator inhibitor-1 (PAI-1) and D-Dimer. Results: Both FCG and CON groups exhibited a faster aPTT after the full-body workout compared to all other time points. Thrombin generation markers, TAT and PTF 1+2, increased significantly after the full-body workout and immediately after landing in CT. Additionally, tPA increased after the full-body workout, while PAI-1 increased before the flight to CA, after the full-body workout, and just after landing in CT. The D-Dimer significantly increased after the full-body workout and at 29 h post-flight in both groups. Between groups, aPTT was significantly faster and TAT elevated with the CON group at 29 h post-flight. Also, PAI-1 demonstrated higher concentrations immediately after landing in CT for the CON group. Conclusion: A full-body muscle-damaging workout in conjunction with a trans-continental flight activated the coagulation and fibrinolytic systems. Additionally, wearing a full-body compression garment may limit coagulation following a workout through the recovery period.  相似文献   

19.
Seed longevity varies considerably in cultivated rice, but the underlying mechanism of longevity is not well understood. To measure seed longevity, we performed an aging treatment at 45 °C on seeds maintained at 14 % moisture content for 14 days. We measured the percentage germination of both treated and normal seeds at 25 °C as a control of seed longevity using four replications over 2 years. In total, 140 accessions from a core collection with diverse origins were genotyped using 204 SSR markers, which distributed into 12 chromosomes, to identify marker–trait associations with seed longevity. An analysis of the population structure revealed four subgroups. The r 2 values ranged from 0.0 to 0.8901 for all intrachromosomal loci pairs, with an average of 0.0773. Linkage disequilibrium (LD) between linked markers decreased with distance and displayed a substantial drop in LD decay values between 20 and 50 cM. Marker–trait associations were investigated using a mixed linear model approach, considering both population structure (Q) and kinship (K). Twelve marker–trait associations (P < 0.01) were common between the two germination treatments and over the 2-year study, explaining more than 10 % of the total variation. These ten different markers were distributed on five chromosomes. The significant associated SSR markers identified will be useful to seed-bank managers to ensure collections are maintained at high levels of viability to avoid loss of genotypes from the population and for marker-assisted selection.  相似文献   

20.
《Biorheology》1996,33(4-5):289-304
To study the effect of dynamic mechanical force on cartilage metabolism, many investigators have applied a cyclic compressive load to cartilage disc explants in vitro. The most frequently used in vitro testing protocol has been the cyclic unconfined compression of articular cartilage in a bath of culture medium. Cyclic compression has been achieved by applying either a prescribed cyclic displacement or a prescribed cyclic force on a loading platen placed on the top surface of a cylindrical cartilage disc. It was found that the separation of the loading platen from the tissue surface was likely when a prescribed cyclic displacement was applied at a high frequency.The purpose of the present study was to simulate mathematically the dynamic behavior of a cylindrical cartilage disc subjected to cyclic unconfined compression under a dynamic force boundary condition protocol, and to provide a parametric analysis of mechanical deformations within the extracellular matrix. The frequency-dependent dynamic characteristics of dilatation, hydrostatic pressure and interstitial fluid velocity were analyzed over a wide range of loading frequencies without the separation of the loading platen. The result predicted that a cyclic compressive force created an oscillating positive-negative hydrostatic pressure together with a forced circulation of interstitial fluid within the tissue matrix. It was also found that the load partitioning mechanism between the solid and fluid phases was a function of loading frequency. At a relatively high loading frequency, a localized dynamic zone was developed near the peripheral free surface of the cartilage disc, where a large dynamic pressure gradient exists, causing vigorous interstitial fluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号