首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study proposes to estimate the horizontal positions of the body's centre of gravity (CoG) in a standing posture, on the basis of the horizontal positions of the centre of pressure (CoP). The latter were measured with a force plate, and using a low-pass filter defined by a mathematical relationship of the relative magnitude of the CoG with respect to the magnitude of the CoP, as a function of the frequency oscillations (Brenière, 1996, Journal of Motor Behaviour 28, 291–298). This relationship was computed from the angular momentum equation applied to the whole body with respect to the CoG using the inverse dynamics approach and force plate recordings, and considering the CoP and CoG oscillations as simple periodic functions. Five subjects were asked to perform voluntary oscillations along medio-lateral and antero-posterior axes, keeping their bodies straight, and without moving their feet. The CoG accelerations measured by the force plate were compared with the CoG accelerations derived from the estimated CoG positions. The average root-mean-square difference between these accelerations was very small, confirming the accuracy of this method. This simplified way to calculate the CoG positions, rarely measured in standing, allows a comparative assessment of motion performance. This method could also be applied to other kinds of movement such as walking.  相似文献   

2.
Davet, Julien, Benoit Clavel, Lucien Datas, LaurenceMani-Ponset, Daniel Maurel, Serge Herbuté, Michel Viso, WilliamHinds, Joellen Jarvi, and Jacqueline Gabrion.Choroidal readaptation to gravity in rats after spaceflight andhead-down tilt. J. Appl. Physiol.84(1): 19-29, 1998.To determine when choroidal structures wererestored after readaptation to Earth gravity or orthostatic position,fine structure and protein distribution were studied in rat choroidplexus dissected either 6 h [Space Life Sciences-2 (SLS-2)experiments] or 2 days [National Institutes ofHealth-Rodent 1 (NIH-R1) experiments] after a spaceflight, or 6 hafter head-down tilt (HDT) experiments. Apical alterations were notedin choroidal cells from SLS-2 and HDT animals, confirming thatweightlessness impaired choroidal structures and functions. However,the presence of small apical microvilli and kinocilia and the absenceof vesicle accumulations showed that the apical organization began tobe restored rapidly after landing. Very enlarged apical microvilli appeared after 2 days on Earth, suggesting increased choroidal activity. However, as distributions of ezrin and carbonic anhydrase IIremained altered in both flight and suspended animals after readaptation to Earth gravity, it was concluded that choroidal structures and functions were not completely restored, even after 2 days in Earth's gravity.

  相似文献   

3.

Background

Individuals who cannot functionally reposition themselves adopt a passive body posture and suffer from physical discomfort in long-term sitting. To regulate body load and to prevent sitting related mobility problems, proper posture control is important. The inability to reposition underlines the importance for seating interventions that control body posture from automatic chair adjustments. We developed an adjustable simulator chair that allows the alignment of the trunk, pelvis and thighs to be controlled independently. This study describes the system for decoupled body segments adjustment and develops a predictive model that computes angular chair configuration for desired body postures.

Methods

Eighteen healthy male subjects participated in this study. The experiment involved a protocol of five trials, each investigating the effect of individual chair segment angle adjustment on body segments rotation. Quasi-static chair adjustments were performed, in which angular chair configuration and body segments orientation were measured using an infrared motion capturing system and an inertia sensor attached on the pelvis.

Results

Linear best-fit equations together with the coefficients of determination were computed. Significant relations have been found between angular chair configuration and body segments orientation leading to an algorithm that predicts chair configuration for desired body posture.

Conclusions

The predictive algorithm seems applicable to compute angular chair configuration for desired body posture when the initial body–chair configuration is known. For clinical application, future experiments must be performed on impaired individuals to validate the algorithm in terms of accuracy.  相似文献   

4.
5.

Background  

The vestibular system of the inner ear provides information about head translation/rotation in space and about the orientation of the head with respect to the gravitoinertial vector. It also largely contributes to the control of posture through vestibulospinal pathways. Testing an individual severely deprived of somatosensory information below the nose, we investigated if equilibrium can be maintained while seated on the sole basis of this information.  相似文献   

6.
7.
Surface perturbation has been used for decades to study balance and postural control; however the behavior of the trunk in these postural responses has been largely overlooked. Thirteen healthy males (18–23 yrs) were exposed to horizontal support surface translations delivered randomly in one of eight different horizontal directions in both sitting and standing. A 4-segment model of the trunk was used to estimate the kinematics and kinetics associated with the postural response, while surface EMG was acquired, bilaterally, from seven trunk muscles and one hip muscle. Multi-segmental movement was observed in the trunk in both test postures. Both the biomechanical and neuromuscular aspects of the trunk response were significantly affected by translation direction and test posture, with an interaction effect between these variables. The response in sitting was closely tied to the movement of the support surface, while the response in standing occurred in two phases: the first related to the dynamic response in the lower limbs, and the second tied to the movement of the support surface. As such, the observed postural responses could be largely explained by the biomechanical constraints of the system, such that the neural control of trunk equilibrium is simplified.  相似文献   

8.
The purpose of this study was to examine the muscular activities and kinetics of the trunk during unstable sitting in healthy and LBP subjects. Thirty-one healthy subjects and twenty-three LBP subjects were recruited. They were sat on a custom-made chair mounted on a force plate. Each subject was asked to regain balance after the chair was tilted backward at 20°, and then released. The motions of the trunk and trunk muscle activity were examined. The internal muscle moment and power at the hip and lumbar spine joints were calculated using the force plate and motion data. No significant differences were found in muscle moment and power between healthy and LBP subjects (p > 0.05). The duration of contraction of various trunk muscles and co-contraction were significantly longer in the LBP subjects (p < 0.05) when compared to healthy subjects, and the reaction times of the muscles were also significantly reduced in LBP subjects (p < 0.05). LBP subjects altered their muscle strategies to maintain balance during unstable sitting, but these active mechanisms appear to be effective as trunk balance was not compromised and the internal moment pattern remained similar. The changes in muscle strategies may be the causes of LBP or the result of LBP with an attempt to protect the spine.  相似文献   

9.
Present investigation faces the question of quantitative assessment of exchanged forces and torques at the restraints during whole body posture exercises in long-term microgravity. Inverse dynamic modelling and total angular momentum at the ankle joint were used in order to reconstruct movement dynamics at the restraining point, represented by the ankle joint. The hypothesis is that the minimisation of the torques at the interface point assumes a key role in movement planning in 0 g. This hypothesis would respond to an optimisation of muscles activity, a minimisation of energy expenditure and therefore an accurate control of body movement. Results show that the 0 g movement strategy adopted ensures that the integral of the net ankle moment between the beginning and the end of the movement is zero. This expected mechanical constraint is not satisfied when 0 g movement dynamics is simulated using terrestrial kinematics. This accounts for a significant imposed change of movement strategy. Particularly, the efficient compensation of the inertial effects of the segments in terms of total angular momentum at the ankle joint was evidenced. These results explain the exaggerated axial synergies, observed on kinematics and which moved centre of mass (CM) backward from its already backward initial positioning, as a tool for enhancing the compensation and achieving the desired minimisation of the torques exchanges at the restraints.  相似文献   

10.
The location of the centre of rotation of human joints that can be modelled as a spherical hinge can be estimated using kinematics information about the two adjacent bony segments involved recorded while the subject makes them move one relative to the other (functional method). In order to solve the relevant analytical problem, several algorithms have been proposed. Most recently, two methods, one based on a spherical best-fit approach and another based on the Reuleaux construction, have been presented as being different and submitted to comparative evaluation. This paper modifies the second method taking all information in the data set into account and shows that, having done this, the two methods coincide analytically.  相似文献   

11.
Trunk postural control (TPC) has been investigated in several populations and tasks. Previous work observed targeted training of TPC via isolated trunk control tasks may improve performance in other activities (e.g., walking). However, the nature of this relationship remains unknown. We therefore investigated the relationship between TPC, at both the global (i.e., response to finite perturbations) and local (i.e., resistance to continuous perturbations) levels, during walking and unstable sitting, both at varying levels of task demand. Thirteen individuals (11 Male, 2 Female) with no recent history (past 12 months) of illness, injury, or musculoskeletal disorders walked on a dual-belt treadmill at four speeds (−20%, −10%, +10%, and + 20% of self-selected walking speed) and completed an unstable sitting task at four levels of chair instability (100, 75, 60, and 45% of an individual’s “neutral” stability as defined by the gravitational gradient). Three-dimensional trunk and pelvic kinematics were collected. Tri-planar Lyapunov exponents and sample entropy characterized local TPC. Global TPC was characterized by ranges of motion and, for seated trials, metrics derived from center-of-pressure time series (i.e., path length, 95% confidence ellipse area, mean velocity, and RMS position). No strong or significant correlations (−0.057 < ρ < 0.206) were observed between local TPC during walking and unstable sitting tasks. However, global TPC declined in both walking and unstable sitting as task demand increased, with a moderate inter-task relationship (0.336 < ρ < 0.544). While the mechanisms regulating local TPC are inherently different, global TPC may be similarly regulated across both tasks, supporting future translation of improvements in TPC between tasks.  相似文献   

12.
When human returns to the earth from space, the reverse shift of body fluid to the shift caused by microgravity. The physical phenomenon produces probably cardiovascular deconditioning due to a disturbance of the baroreflex for regulating blood pressure. To clarify the disturbance, the nervous control mechanisms of cardiovascular system in mammals exposed to microgravity should be investigated. Head-down tilt (HDT) is one of the methods to simulate the headward shift of the body fluid. To understand the effect of microgravity on the cardiovascular nervous control system, we studied effects of headward shift of the body fluid on structural and functional development of the aortic nerve and the aortic baroreflex in the young rabbit raised in a head-down and tail-up posture.  相似文献   

13.
The joint forces and moments driving the motion of a human subject are classically computed by an inverse dynamic calculation. However, even if this process is theoretically simple, many sources of errors may lead to huge inaccuracies in the results. Moreover, a direct comparison with in vivo measured loads or with "gold standard" values from literature is only possible for very specific studies. Therefore, assessing the inaccuracy of inverse dynamic results is not a trivial problem and a simple method is still required. This paper presents a simple method to evaluate both: (1) the consistency of the results obtained by inverse dynamics; (2) the influence of possible modifications in the inverse dynamic hypotheses. This technique concerns recursive calculation performed on full kinematic chains, and consists in evaluating the loads obtained by two different recursive strategies. It has been applied to complex 3D whole body movements of balance recovery. A recursive Newton-Euler procedure was used to compute the net joint loads. Two models were used to represent the subject bodies, considering or not the upper body as a unique rigid segment. The inertial parameters of the body segments were estimated from two different sets of scaling equations [De Leva, P., 1996. Adjustments to Zatsiorsky-Suleyanov's segment inertia parameters. Journal of Biomechanics 29, 1223-1230; Dumas, R., Chèze, L., Verriest, J.-P., 2006b. Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters. Journal of Biomechanics, in press]. Using this comparison technique, it has been shown that, for the balance recovery motions investigated: (1) the use of the scaling equations proposed by Dumas et al., instead of those proposed by De Leva, improves the consistency of the results (average relative influence up to 30% for the transversal moment); (2) the arm motions dynamically influence the recovery motion in a non negligible way (average relative influence up to 15% and 30% for the longitudinal force and the transversal moment, respectively).  相似文献   

14.
Access management is among the most important conservation actions for grizzly bears in North America. In Alberta, Canada, nearly all grizzly bear mortalities are caused by humans and occur near roads and trails. Consequently, understanding how bears move relative to roads is of crucial importance for grizzly bear conservation. We present the first application of step‐selection functions to model habitat selection and movement of grizzly bears. We then relate this to a step‐length analysis to model the rate of movement through various habitats. Grizzly bears of all sex and age groups were more likely to select steps closer to roads irrespective of traffic volume. Roads are associated with habitats attractive to bears such as forestry cutblocks, and models substituting cutblocks for roads outperformed road models in predicting bear selection during day, dawn, and dusk time periods. Bear step lengths increased near roads and were longest near highly trafficked roads indicating faster movement when near roads. Bear selection of roads was consistent throughout the day; however, time of day had a strong influence over selection of forest structure and terrain variables. At night and dawn, bears selected forests of intermediate age between 40 and 100 yr, and bears selected older forests during the day. At dawn, bears selected steps with higher solar radiation values, whereas, at dusk, bears chose steps that were significantly closer to edges. Because grizzly bears use areas near roads during spring and most human‐caused mortalities occur near roads, access management is required to reduce conflicts between humans and bears. Our results support new conservation guidelines in western North America that encourage the restriction of human access to roads constructed for resource extraction.  相似文献   

15.
Recently, experimental results have demonstrated that the load carrying capacity of the human spine substantially increases under the follower load condition. Thus, it is essential to prove that a follower load can be generated in vivo by activating the appropriate muscles in order to demonstrate the possibility that the stability of the spinal column could be maintained through a follower load mechanism. The aim of this study was to analyze the coordination of the trunk muscles in order to understand the role of the muscles in generating the follower load. A three-dimensional finite element model of the lumbar spine was developed from T12 to S1 and 117 pairs of trunk muscles (58 pairs of superficial muscles and 59 pairs of deep muscles) were considered. The follower load concept was mathematically represented as an optimization problem. The muscle forces required to generate the follower load were predicted by solving the optimization problem. The corresponding displacements and rotations at all nodes were estimated along with the follower forces, shear forces, and joint moments acting on those nodes. In addition, the muscle forces and the corresponding responses were investigated when the activations of the deep muscles or the superficial muscles were restricted to 75% of the maximum activation, respectively. Significantly larger numbers of deep muscles were involved in the generation of the follower load than the number of superficial muscles, regardless of the restriction on muscle activation. The shear force and the resultant joint moment are more influenced by the change in muscle activation in the superficial muscles. A larger number of deep trunk muscles were activated in order to maintain the spinal posture in the lumbar spine. In addition, the deep muscles have a larger capability to reduce the shear force and the resultant joint moment with respect to the perturbation of the external load or muscle fatigue compared to the superficial muscles.  相似文献   

16.
Velocity of movement has been suggested as a risk factor for low-back disorders. The effect of changes in velocity during unconstrained flexion-extension movements on muscle activations, spinal loads, base reaction forces and system stability was computed. In vivo measurements of kinematics and ground reaction forces were initially carried out on young asymptomatic subjects. The collected kinematics of three subjects representing maximum, mean and minimum lumbar rotations were subsequently used in the kinematics-driven model to compute results during the entire movements at three different velocities. Estimated spinal loads and muscle forces were significantly larger in fastest pace as compared to slower ones indicating the effect of inertial forces. Spinal stability was improved in larger trunk flexion angles and fastest movement. Partial or full flexion relaxation of global extensor muscles occurred only in slower movements. Some local lumbar muscles, especially in subjects with larger lumbar flexion and at slower paces, also demonstrated flexion relaxation. Results confirmed the crucial role of movement velocity on spinal biomechanics. Predictions also demonstrated the important role on response of the magnitude of peak lumbar rotation and its temporal variation.  相似文献   

17.
Alterations in the lumbo-pelvic coordination denote changes in neuromuscular control of trunk motion as well as load sharing between passive and active tissues in the lower back. Differences in timing and magnitude aspects of lumbo-pelvic coordination between patients with chronic low back pain (LBP) and asymptomatic individuals have been reported; yet, the literature on lumbo-pelvic coordination in patients with acute LBP is scant. A case-control study was conducted to explore the differences in timing and magnitude aspects of lumbo-pelvic coordination between females with (n=19) and without (n=19) acute LBP. Participants in each group completed one experimental session wherein they performed trunk forward bending and backward return at preferred and fast paces. The amount of lumbar contribution to trunk motion (as the magnitude aspect) as well as the mean absolute relative phase (MARP) and deviation phase (DP) between thoracic and pelvic rotations (as the timing aspect) of lumbo-pelvic coordination were calculated. The lumbar contribution to trunk motion in the 2nd and the 3rd quarters of both forward bending and backward return phases was significantly smaller in the patient than the control group. The MARP and the DP were smaller in the patient vs. the control group during entire motion. The reduced lumbar contribution to trunk motion as well as the more in-phase and less variable lumbo-pelvic coordination in patients with acute LBP compared to the asymptomatic controls is likely the result of a neuromuscular adaptation to reduce painful deformation and to protect injured lower back tissues.  相似文献   

18.
19.
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.  相似文献   

20.
Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis and usually affects young girls. Studies mostly describe the differences between scoliotic and non-scoliotic girls and focus primarily on a single set of parameters derived from spinal and pelvis morphology, posture or standing imbalance. No study addressed all these three biomechanical aspects simultaneously in pre-braced AIS girls of different scoliosis severity but with similar curve type and their interaction with scoliosis progression. The first objective of this study was to test if there are differences in these parameters between pre-braced AIS girls with a right thoracic scoliosis of moderate (less than 27°) and severe (more than 27°) deformity. The second objective was to identify which of these parameters are related to the Cobb angle progression either individually or in combination of thereof. Forty-five scoliotic girls, randomly selected by an orthopedic surgeon from the hospital scoliosis clinic, participated in this study. Parameters related to pelvis morphology, pelvis orientation, trunk posture and quiet standing balance were measured. Generally moderate pre-brace idiopathic scoliosis patients displayed lower values than the severe group characterized by a Cobb angle greater than 27°. Only pelvis morphology and trunk posture were statistically different between the groups while pelvis orientation and standing imbalance were similar in both groups. Statistically significant Pearson coefficients of correlation between individual parameters and Cobb angle ranged between 0.32 and 0.53. Collectively trunk posture, pelvis morphology and standing balance parameters are correlated with Cobb angle at 0.82. The results suggest that spinal deformity progression is not only a question of trunk morphology distortion by itself but is also related to pelvis asymmetrical bone growth and standing neuromuscular imbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号