首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphorylation at conserved sites regulates the tumor suppressor activity of Numb. Enforced expression of a phospho-mimetic form of Numb (Numb-TS4D) or genetic manipulation that boosts phospho-Numb levels, attenuates endogenous Numb activity and causes ectopic neuroblast formation (ENF). This effect on neuroblast homeostasis occurs only in the type II neuroblast lineage. We identify Dronc caspase as a novel binding partner of Numb, and demonstrate that overexpression of Dronc suppresses the effects of Numb-TS4D in a non-apoptotic and possibly non-catalytic manner. Reduction of Dronc activity facilitates ENF induced by phospho-Numb. Our findings uncover a molecular mechanism that regulates Numb activity and suggest a novel role for Dronc caspase in regulating neural stem cell homeostasis.  相似文献   

2.
3.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

4.
5.
Recent studies using the Drosophila central nervous system as a model have identified key molecules and mechanisms underlying stem cell self-renewal and differentiation. These studies suggest that proteins like Aurora-A, atypical protein kinase C, Prospero and Brain tumor act as key regulators in a tightly coordinated interplay between mitotic spindle orientation and asymmetric protein localization. These data also provide initial evidence that both processes are coupled to cell cycle progression and growth control, thereby regulating a binary switch between proliferative stem self-renewal and differentiative progenitor cell specification. Considering the evolutionary conservation of some of the mechanisms and molecules involved, these data provide a rationale and genetic model for understanding stem cell self-renewal and differentiation in general. The new data gained in Drosophila may therefore lead to conceptual advancements in understanding the aetiology and treatment of human neurological disorders such as brain tumor formation and neurodegenerative diseases.Key words: stem cell, progenitor, neuroblast, asymmetric division, self-renewal, differentiation, drosophila, prospero, brain tumor  相似文献   

6.
7.
8.
9.
10.
An important question in stem cell biology is how a cell decides to self-renew or differentiate. Drosophila neuroblasts divide asymmetrically to self-renew and generate differentiating progeny called GMCs. Here, we report that the Brain tumor (Brat) translation repressor is partitioned into GMCs via direct interaction with the Miranda scaffolding protein. In brat mutants, another Miranda cargo protein (Prospero) is not partitioned into GMCs, GMCs fail to downregulate neuroblast gene expression, and there is a massive increase in neuroblast numbers. Single neuroblast clones lacking Prospero have a similar phenotype. We conclude that Brat suppresses neuroblast stem cell self-renewal and promotes neuronal differentiation.  相似文献   

11.
12.
13.
14.
15.
16.
Drosophila neuroblasts are a model system for studying stem cell self-renewal and the establishment of cortical polarity. Larval neuroblasts generate a large apical self-renewing neuroblast, and a small basal cell that differentiates. We performed a genetic screen to identify regulators of neuroblast self-renewal, and identified a mutation in sgt1 (suppressor-of-G2-allele-of-skp1) that had fewer neuroblasts. We found that sgt1 neuroblasts have two polarity phenotypes: failure to establish apical cortical polarity at prophase, and lack of cortical Scribble localization throughout the cell cycle. Apical cortical polarity was partially restored at metaphase by a microtubule-induced cortical polarity pathway. Double mutants lacking Sgt1 and Pins (a microtubule-induced polarity pathway component) resulted in neuroblasts without detectable cortical polarity and formation of "neuroblast tumors." Mutants in hsp83 (encoding the predicted Sgt1-binding protein Hsp90), LKB1, or AMPKα all show similar prophase apical cortical polarity defects (but no Scribble phenotype), and activated AMPKα rescued the sgt1 mutant phenotype. We propose that an Sgt1/Hsp90-LKB1-AMPK pathway acts redundantly with a microtubule-induced polarity pathway to generate neuroblast cortical polarity, and the absence of neuroblast cortical polarity can produce neuroblast tumors.  相似文献   

17.
18.
19.
20.
Recent findings suggest the possibility that tumors originate from cancer cells with stem cell properties. The cancer stem cell (CSC) hypothesis provides an explanation for why existing cancer therapies often fail in eradicating highly malignant tumors and end with tumor recurrence. Although normal stem cells and CSCs both share the capacity for self-renewal and multi-lineage differentiation, suggesting that CSC may be derived from normal SCs, the cellular origin of transformation of CSCs is debatable. Research suggests that the tightly controlled balance of self-renewal and differentiation that characterizes normal stem cell function is dis-regulated in cancer. Additionally, recent evidence has linked an embryonic stem cell (ESC)-like gene signature with poorly differentiated high-grade tumors, suggesting that regulatory pathways controlling pluripotency may in part contribute to the somatic CSC phenotype. Here, we introduce expression profile bioinformatic analyses of mouse breast cells with CSC properties, mouse embryonic stem (mES) and induced pluripotent stem (iPS) cells with an emphasis on how study of pluripotent stem cells may contribute to the identification of genes and pathways that facilitate events associated with oncogenesis. Global gene expression analysis from CSCs and induced pluripotent stem cell lines represent an ideal model to study cancer initiation and progression and provide insight into the origin cancer stem cells. Additionally, insight into the genetic and epigenomic mechanisms regulating the balance between self-renewal and differentiation of somatic stem cells and cancer may help to determine whether different strategies used to generate iPSCs are potentially safe for therapeutic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号