首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluid percussion injury (FPI) is a widely used experimental model for studying traumatic brain injury (TBI). However, little is known about how the brain mechanically responds to fluid impacts and how the mechanical pressures/strains of the brain correlate to subsequent brain damage for rodents during FPI. Hence, we developed a numerical approach to simulate FPI experiments on rats and characterize rat brain pressure/strain responses at a high resolution. A previous rat brain model was improved with a new hexahedral elements-based skull model and a new cerebrospinal fluid (CSF) layer. We validated the numerical model against experimentally measured pressures from FPI. Our results indicated that brain tissues under FPI experienced high pressures, which were slightly lower (10–20%) than input saline pressure. Interestingly, FPI was a mixed focus- and diffuse-type injury model with highest strains (12%) being concentrated in the ipsilateral cortex under the fluid-impact site and diffuse strains (5–10%) being spread to the entire brain, which was different from controlled cortical impact in which high strains decreased gradually away from the impact site.  相似文献   

2.
Every year over a million Americans suffer a traumatic brain injury (TBI). Combined with the incidence of TBIs worldwide, the physical, emotional, social, and economical effects are staggering. Therefore, further research into the effects of TBI and effective treatments is necessary. The controlled cortical impact (CCI) model induces traumatic brain injuries ranging from mild to severe. This method uses a rigid impactor to deliver mechanical energy to an intact dura exposed following a craniectomy. Impact is made under precise parameters at a set velocity to achieve a pre-determined deformation depth. Although other TBI models, such as weight drop and fluid percussion, exist, CCI is more accurate, easier to control, and most importantly, produces traumatic brain injuries similar to those seen in humans. However, no TBI model is currently able to reproduce pathological changes identical to those seen in human patients. The CCI model allows investigation into the short-term and long-term effects of TBI, such as neuronal death, memory deficits, and cerebral edema, as well as potential therapeutic treatments for TBI.  相似文献   

3.
Traumatic brain injury (TBI) is a common cause of morbidity and mortality in people of all ages. Following the acute mechanical insult, TBI evolves over the ensuing minutes and days. Understanding the secondary factors that contribute to TBI might suggest therapeutic strategies to reduce the long-term consequences of brain trauma. To assess secondary factors that contribute to TBI, we studied a lateral fluid percussion injury (FPI) model in mice. Following FPI, the brain cortex became acidic, consistent with data from humans following brain trauma. Administering HCO3 after FPI prevented the acidosis and reduced the extent of neurodegeneration. Because acidosis can activate acid sensing ion channels (ASICs), we also studied ASIC1a−/− mice and found reduced neurodegeneration after FPI. Both HCO3 administration and loss of ASIC1a also reduced functional deficits caused by FPI. These results suggest that FPI induces cerebral acidosis that activates ASIC channels and contributes to secondary injury in TBI. They also suggest a therapeutic strategy to attenuate the adverse consequences of TBI.  相似文献   

4.
Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.  相似文献   

5.
大鼠侧位液压冲击脑损伤动物模型的病理生理学观察   总被引:2,自引:0,他引:2  
目的:建立一种重复性好的大鼠分级侧位液压冲击脑损伤模型,为进一步研究外伤性脑损伤的分子机制提供物质基础。方法:雄性SD大鼠,随机分为正常对照组,手术对照组和损伤组损作组接冲击力大小分为轻(100kPa)、中(200kPa)、重(300kPa)3个亚组。实验中由计算机记录冲击时脑承受的压力曲线并描记大鼠血压和心率变化。结果:脑承受的压力曲线与冲击气压呈直线正相关(r=0.985),损伤组大鼠在冲击后  相似文献   

6.
Computational models of the human brain are widely used in the evaluation and development of helmets and other protective equipment. These models are often attempted to be validated using cadaver tissue displacements despite studies showing neural tissue degrades quickly after death. Addressing this limitation, this study aimed to develop a technique for quantifying living brain motion in vivo using a closed head impact animal model of traumatic brain injury (TBI) called CHIMERA. We implanted radiopaque markers within the brain of three adult ferrets and resealed the skull while the animals were anesthetized. We affixed additional markers to the skull to track skull kinematics. The CHIMERA device delivered controlled, repeatable head impacts to the head of the animals while the impacts were fluoroscopically stereo-visualized. We observed that 1.5 mm stainless steel fiducials (∼8 times the density of the brain) migrated from their implanted positions while neutral density targets remained in their implanted position post-impact. Brain motion relative to the skull was quantified in neutral density target tests and showed increasing relative motion at higher head impact severities. We observed the motion of the brain lagged behind that of the skull, similar to previous studies. This technique can be used to obtain a comprehensive dataset of in vivo brain motion to validate computational models reflecting the mechanical properties of the living brain. The technique would also allow the mechanical response of in vivo brain tissue to be compared to cadaveric preparations for investigating the fidelity of current human computational brain models.  相似文献   

7.

Background

Traumatic brain injury (TBI) represents a critical health problem of which timely diagnosis and treatment remain challenging. TBI is a result of an external force damaging brain tissue, accompanied by delayed pathogenic events which aggravate the injury. Molecular responses to different mild TBI subtypes have not been well characterized. TBI subtype classification is an important step towards the development and application of novel treatments. The computational systems biology approach is proved to be a promising tool in biomarker discovery for central nervous system injury.

Results

In this study, we have performed a network-based analysis on gene expression profiles to identify functional gene subnetworks. The gene expression profiles were obtained from two experimental models of injury in rats: the controlled cortical impact and the fluid percussion injury. Our method integrates protein interaction information with gene expression profiles to identify subnetworks of genes as biomarkers. We have demonstrated that the selected gene subnetworks are more accurate to classify the heterogeneous responses to different injury models, compared to conventional analysis using individual marker genes selected without network information.

Conclusions

The systems approach can lead to a better understanding of the underlying complexities of the molecular responses after TBI and the identified subnetworks will have important prognostic functions for patients who sustain mild TBIs.
  相似文献   

8.
Elevated intracranial pressure (ICP) is a significant problem in several forms of ischemic brain injury including stroke, traumatic brain injury and cardiac arrest. This elevation may result in further neurological injury, in the form of transtentorial herniation1,2,3,4, midbrain compression, neurological deficit or increased cerebral infarct2,4. Current therapies are often inadequate to control elevated ICP in the clinical setting5,6,7 . Thus there is a need for accurate methods of ICP measurement in animal models to further our understanding of the basic mechanisms and to develop new treatments for elevated ICP.In both the clinical and experimental setting ICP cannot be estimated without direct measurement. Several methods of ICP catheter insertion currently exist. Of these the intraventricular catheter has become the clinical ''gold standard'' of ICP measurement in humans8. This method involves the partial removal of skull and the instrumentation of the catheter through brain tissue. Consequently, intraventricular catheters have an infection rate of 6-11%9. For this reason, subdural and epidural cannulations have become the preferred methods in animal models of ischemic injury. Various ICP measurement techniques have been adapted for animal models, and of these, fluid-filled telemetry catheters10 and solid state catheters are the most frequently used11,12,13,14,15. The fluid-filled systems are prone to developing air bubbles in the line, resulting in false ICP readings. Solid state probes avoid this problem (Figure 1). An additional problem is fitting catheters under the skull or into the ventricles without causing any brain injury that might alter the experimental outcomes. Therefore, we have developed a method that places an ICP catheter contiguous with the epidural space, but avoids the need to insert it between skull and brain. An optic fibre pressure catheter (420LP, SAMBA Sensors, Sweden) was used to measure ICP at the epidural location because the location of the pressure sensor (at the very tip of the catheter) was found to produce a high fidelity ICP signal in this model. There are other manufacturers of similar optic fibre technologies13 that may be used with our methodology. Alternative solid state catheters, which have the pressure sensor located at the side of the catheter tip, would not be appropriate for this model as the signal would be dampened by the presence of the monitoring screw. Here, we present a relatively simple and accurate method to measure ICP. This method can be used across a wide range of ICP related animal models.  相似文献   

9.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

10.
Brain edema is a major traumatic brain injury (TBI)-related neurological complication. In the initiation stage of TBI, brain edema is characterized by astrocyte swelling (cytotoxic edema). We studied the impact of a long noncoding RNA, Malat1, on the TBI-induced astrocyte swelling and brain edema. Our results showed that Malat1 was downregulated in both the TBI rat model and the astrocyte fluid percussion injury (FPI) model, which concurred with brain edema and astrocyte swelling. Overexpression of Malat1 significantly inhibited rat brain edema, meanwhile reducing interleukin-6 (IL-6), nuclear factor-κB (NF-κB), and aquaporin 4 (AQP4) expression after TBI. In addition, overexpression of Malat1 ameliorated FPI-induced astrocyte swelling and reduced IL-6 release. Quantitative real-time polymerase chain reaction and Western blot analysis also corroborated the inhibitory effects of Malat1 on NF-κB and AQP4 expression after FPI. Our results highlighted the protective effects of Malat1 on the TBI-induced brain edema, which were mediated through regulating IL-6, NF-κB, and AQP4 expression. Our study could provide a novel approach for TBI treatment.  相似文献   

11.
In the fluid percussion model of traumatic brain injury (TBI), we examined muscarinic and metabotropic glutamate receptor-stimulated polyphosphoinositide (PPI) turnover in rat hippocampus. Moderate injury was obtained by displacement and deformation of the brain within the closed cranial cavity using a fluid percussion device. Carbachol and (±)-1-Aminocyclopentane-trans-1,3.-dicarboxylic acid (trans-ACPD)-stimulated PPI hydrolysis was assayed in hippocampus from injured and sham-injured controls at both 1 hour and 15 days following injury. At 1 hour after TBI, the response to carbachol was enhanced in injured rats by up to 200% but the response to trans-ACPD was diminished by as much as 28%. By contrast, at 15 days after TBI, the response to carbachol was enhanced by 25% and the response to trans-ACPD was enhanced by 73%. The ionotropic glutamate agonists N-methyl-D-aspartate (NMDA), and -amino-3 hydroxy-5-methyl-4-isoxazolepropionate (AMPA), did not increase PPI hydrolysis in either sham or injured rats and injury did not alter basal hydrolysis. Thus, hippocampal muscarinic and metabotropic receptors linked to phospholipase C are differentially altered by TBI.Abbreviations used TBI traumatic brain injury - EAA excitatory amino acids - PPI polyphosphoinositides - IP inositol phosphates - NMDA N-methyl-D-aspartate - AMPA -amino-3-hydroxy-5-methylisoxazole-4-propionate - trans-ACPD (±)-1-Aminocyclopentanetrans-1,3-dicarboxylic acid - LTP long term potentiation  相似文献   

12.
We investigated the hypothesis that high Ca2+ influx during traumatic brain injury induces the activation of the caspase-1 enzyme, which triggers neuroinflammation and cell apoptosis in a cell culture model of neuronal stretch injury and an in vivo model of fluid percussion injury (FPI). We first established that stretch injury causes a rapid increase in the intracellular Ca2+ level, which activates interleukin-converting enzyme caspase-1. The increase in the intracellular Ca2+ level and subsequent caspase-1 activation culminates into neuroinflammation via the maturation of IL-1β. Further, we analyzed caspase-1-mediated apoptosis by TUNEL staining and PARP western blotting. The voltage-gated sodium channel blocker, tetrodotoxin, mitigated the stretch injury-induced neuroinflammation and subsequent apoptosis by blocking Ca2+ influx during the injury. The effect of tetrodotoxin was similar to the caspase-1 inhibitor, zYVAD-fmk, in neuronal culture. To validate the in vitro results, we demonstrated an increase in caspase-1 activity, neuroinflammation and neurodegeneration in fluid percussion-injured animals. Our data suggest that neuronal injury/traumatic brain injury (TBI) can induce a high influx of Ca2+ to the cells that cause neuroinflammation and cell death by activating caspase-1, IL-1β, and intrinsic apoptotic pathways. We conclude that excess IL-1β production and cell death may contribute to neuronal dysfunction and cognitive impairment associated with TBI.  相似文献   

13.
Traumatic brain injury represents a major public health issue that affects 1.7 million Americans each year and is a primary contributing factor (30.5%) of all injury-related deaths in the United States. The occurrence of traumatic brain injury is likely underestimated and thus has been termed “a silent epidemic”. Exendin-4 is a long-acting glucagon-like peptide-1 receptor agonist approved for the treatment of type 2 diabetes mellitus that not only effectively induces glucose-dependent insulin secretion to regulate blood glucose levels but also reduces apoptotic cell death of pancreatic β-cells. Accumulating evidence also supports a neurotrophic and neuroprotective role of glucagon-like peptide-1 in an array of cellular and animal neurodegeneration models. In this study, we evaluated the neuroprotective effects of Exendin-4 using a glutamate toxicity model in vitro and fluid percussion injury in vivo. We found neuroprotective effects of Exendin-4 both in vitro, using markers of cell death, and in vivo, using markers of cognitive function, as assessed by Morris Water Maze. In combination with the reported benefits of ex-4 in other TBI models, these data support repositioning of Exendin-4 as a potential treatment for traumatic brain injury.  相似文献   

14.

Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain–skull interaction. Nevertheless, the brain–skull interface has been largely simplified in previous three-dimensional head models without accounting for the fluid behaviour of the cerebrospinal fluid (CSF) and its mechanical interaction with the brain and skull. In this study, the brain–skull interface in a previously developed head model is modified as a fluid–structure interaction (FSI) approach, in which the CSF is treated on a moving mesh using an arbitrary Lagrangian–Eulerian multi-material formulation and the brain on a deformable mesh using a Lagrangian formulation. The modified model is validated against brain–skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain–skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain–skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.

  相似文献   

15.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation.Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.  相似文献   

16.
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.  相似文献   

17.
Traumatic brain injury (TBI) was induced by a weight-drop device using 300 g–1 m weight-height impact. The study groups were: control, alpha-lipoic acid (LA) (100 mg/kg, po), TBI, and TBI + LA (100 mg/kg, po). Forty-eight hours after the injury, neurological scores were measured and brain samples were taken for histological examination or determination of thiobarbituric acid reactive substances (TBARS) and glutathione (GSH) levels, myeloperoxidase (MPO) and Na+-K+ ATPase activities, whereas cytokines (TNF-α, IL-1β) were determined in blood. Brain oedema was evaluated by wet–dry weight method and blood–brain barrier (BBB) permeability was evaluated by Evans Blue (EB) extravasation. As a result, neurological scores mildly increased in trauma groups. Moreover, TBI caused a significant decrease in brain GSH and Na+-K+ ATPase activity, which was accompanied with significant increases in TBARS level, MPO activity and plasma proinflammatory cytokines. LA treatment reversed all these biochemical indices as well as histopathological alterations. TBI also caused a significant increase in brain water content and EB extravasation which were partially reversed by LA treatment. These findings suggest that LA exerts neuroprotection by preserving BBB permeability and by reducing brain oedema probably by its anti-inflammatory and antioxidant properties in the TBI model.  相似文献   

18.
Most efforts to understand the pathology of traumatic brain injury (TBI) have been centered on the brain, ignoring the role played by systemic physiology. Gut-derived serotonin is emerging as a major regulator of systemic homeostasis involving various organs and tissues throughout the body. Here, we shed light on the roles occupied by gut-derived serotonin and its downstream metabolic targets in the systemic pathogenesis of TBI. Male C57BL/6J mice were subjected to a fluid percussion injury (FPI) and RT-qPCR was used to examine mRNA levels in intestine, liver, and adipose tissue. In the intestinal tract, TBI transiently downregulated enteric neuronal markers Chat and Nos1 in the duodenum and colon, and altered colonic genes related to synthesis and degradation of serotonin, favoring an overall serotonin downregulation. There also was a decrease in serotonin fluorescence intensity in the colonic mucosa and reduced circulating blood serotonin levels, with concurrent alterations in serotonin-associated gene expression in downstream tissues after TBI (i.e., upregulation of serotonin receptor Htr2a and dysregulation of genes associated with lipid metabolism in liver and adipose). Levels of commensal bacterial species were also altered in the gut and were associated with TBI-mediated changes in the colonic serotonin system. Our findings suggest that TBI alters peripheral serotonin homeostasis, which in turn may impact gastrointestinal function, gut microbiota, and systemic energy balance. These data highlight the importance of building an integrative view of the role of systemic physiology in TBI pathogenesis to assist in the development of effective TBI treatments.  相似文献   

19.
大鼠液压冲击脑损伤热休克蛋白70基因表达的研究   总被引:3,自引:0,他引:3  
目的:观察大鼠侧位液压冲击脑损伤时HSP70的表达分布特点及时序性变化。方法:雄性SD大鼠,给以0.2MPa液压冲击,造成脑损伤,应用免疫组织化学技术观察冲击后不同时间HSP70在脑组织内的表达特点。结果:冲击侧大脑皮层和脑干SHP70阳性神经辊冲击后2h和4h出现,7并逐渐增强直至12h;冲击后4h,冲击侧海马HSP70免疫阳性细胞开始出现,4 ̄12h,海马HSP70免疫阳性细胞数无明显改变。结  相似文献   

20.
目的:观察实验性大鼠脑损伤后不同时相点大脑皮层体感诱发电位(sensorysomaticevoked potentials,ssep)和局部血流量(regional cerebral blood flow,rCBF)的变化。方法:用流体冲击装置制作中度脑损伤模型SYD4200型神经诱发电位诊断系统监测皮层体感诱发电位,氢清除测定大脑局部血流量。结果:中度脑损伤后rCBF明显低于伤前和正常对照组;大脑皮层体感诱发电位的潜伏期明显延长。结论:SEP的变化与脑血流量有着一定的关系,一定程度上SEP的变化可反映脑损伤后血流量的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号