首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers.  相似文献   

2.
Heating eggs during incubation may be relatively energeticallycostly, affecting the outcome or number of breeding attempts.We determined the effect of reduced egg heating costs on nestattendance, change in body mass, and daily energy expenditure(DEE using the doubly labeled water technique) by heating nestsof pectoral sandpipers. We also considered ground temperature,which may influence overall incubation costs, and mass reservesand stage of incubation, which may influence an individual'sability to respond to changes in overall incubation cost. Thetotal proportion of time spent in attending the eggs was significantlygreater in nests that were experimentally heated (3.6% or 52min daily), and this effect was significantly greater at lowground temperatures (14.7% or 211.7 min daily). Mass changewas independent of experimental heating when controlling forattendance, although mass loss rate was greater for birds thatattended more (for every 10% increase in daily proportion ofattendance 0.12 extra grams of body mass were lost per hour),and overall daily attendance increased by 0.5% for every extra1 g of body mass. DEE was greater for birds that had the higherrates of mass gain (for every 0.1 g of mass gained per hour,DEE increased by 20.5 kJ per day) but was independent of experimentalheating when controlling for attendance. Overall, the resultssuggest that females are constrained from attending more bytheir energy reserve levels being depleted at least partly bythe costs of egg heating, but these costs probably do not determineDEE, as costs off the nest may far exceed those incurred whilesitting. Breeding in the arctic is clearly energetically demanding:pectoral sandpipers had an average DEE of 361.1 ± 8.9kjd–1, a mean power output of 4.1 W, equivalent to 6.1times basal metabolic rate (n = 24 birds).  相似文献   

3.
We studied prefledging growth, energy expenditure and time budgets of African Black Oystercatcher, Haematopus moquini, chicks on Robben Island, Western Cape, South Africa. The aim of the study was to investigate the effect of parental feeding on the growth and energetics of semi-precocial shorebird chicks. Chicks reached mean fledging mass, 463 g, in 40 days. The growth rate coefficient of African Black Oystercatcher chicks was 2% below the predicted value for a shorebird species of their body mass, but it was smaller than that of other precocial and semi-precocial shorebirds to date. Resting metabolic rate (RMR, measured through respirometry), daily metabolisable energy (DME), defined as daily energy expenditure (DEE, measured with doubly labelled water) plus energy deposited into tissue (E(tis)), and total metabolisable energy (TME) of African Black Oystercatcher chicks were similar to those expected for a species of their body size. DEE was not influenced by weather (ambient temperature, operative temperature and wind speed), therefore, variations in DEE may be explained by body mass alone. The relative RMR of the African Black Oystercatcher was greater, their TME was approximately the same, their average daily metabolisable energy (ADME) was less, and they spent less time foraging (short periods of parental feeding) and more time inactive than three precocial species in the Western Cape. Therefore, the semi-precocial mode of development of African Black Oystercatcher chicks reduced energy costs from thermoregulation and activity, and they were able to grow relatively faster than precocial, self-feeding shorebird species in similar climatic conditions. The growth rate coefficient of African Black Oystercatcher chicks was smaller than that of Eurasian Oystercatcher, Haematopus ostralegus, chicks, which may be a consequence of differences in body size and latitudinal effects.  相似文献   

4.
Winter is energetically challenging for small herbivores because of greater energy requirements for thermogenesis at a time when little energy is available. We formulated a model predicting optimal wintering body size, accounting for the scaling of both energy expenditure and assimilation to body size, and the trade-off between survival benefits of a large size and avoiding survival costs of foraging. The model predicts that if the energy cost of maintaining a given body mass differs between environments, animals should be smaller in the more demanding environments, and there should be a negative correlation between body mass and daily energy expenditure (DEE) across environments. In contrast, if animals adjust their energy intake according to variation in survival costs of foraging, there should be a positive correlation between body mass and DEE. Decreasing temperature always increases equilibrium DEE, but optimal body mass may either increase or decrease in colder climates depending on the exact effects of temperature on mass-specific survival and energy demands. Measuring DEE with doubly labeled water on wintering Microtus agrestis at four field sites, we found that DEE was highest at the sites where voles were smallest despite a positive correlation between DEE and body mass within sites. This suggests that variation in wintering body mass between sites was due to variation in food quality/availability and not adjustments in foraging activity to varying risks of predation.  相似文献   

5.
Energy expenditure (EE) is a major determinant of energy balance and body composition. The objectives of this paper were to review the contributing factors of the main components of daily EE (DEE) and the inter-individual variability in these components in non-obese (NOb), obese (Ob), and post-obese (POb) adolescents. Body composition especially fat-free mass (FFM), is the major determinant of the basal metabolic rate which contributes 50-70% of DEE, whereas fat mass (FM) is a significant factor only in obese subjects. Physical activity is the second main variation factor of DEE, whereas growth, the thermic effect of food, and thermoregulation are generally of marginal importance. The energy costs and EE associated with various sedentary and physical activities were assessed in NOb, Ob and POb subjects both in standardised and in free-living conditions. The interindividual variability of DEE is high, even after adjustment for body composition, mainly because of great differences in time devoted to the various physical activities. DEE and EE associated with sleep and sedentary activities are significantly higher in Ob than in NOb, but not after adjustment for FFM. On the contrary, EE associated with physical activities is not significantly different between Ob and NOb adolescents, but 61% lower in Ob subjects after adjustment for body composition. Multidisciplinary weight-reduction programmes including moderate energy restriction and physical training result in great FM loss, maintenance of FFM, improvement of physical capacities, but reductions in organ and tissue metabolic rate and in EE associated with the various sedentary and physical activities, which may favour body weight regain in the less active POb subjects.  相似文献   

6.
The field metabolic rates (FMRs) of nine captive goosanders, Mergus merganser , released on two Scottish rivers were estimated using the doubly-labelled water (DLW) technique. Mean (± S.E.) FMR was 2.322±0.239ml CO2 g−1 h−1 and daily energy expenditure (DEE) 1939 ± 184 kJ per day. This was significantly greater (x 1.5) than previous estimates which assumed DEE to be three times the basal metabolic rate (BMR) based on regression equations predicting BMR from body mass. FMR of captives and dietary data from previous studies were used to estimate daily consumption of salmon, Salmo salar , smolts and parr by natural populations of these ducks on the river North Esk, north-east Scotland. Goosanders are likely to consume 480-522 g fish per day of which two-thirds are juvenile salmon; equivalent to a daily intake of 10-11 smolts and 48-52 parr. Annual predation of smolts by goosanders was estimated to be between 8000 and 15 000 or 3 and 16% of annual production.  相似文献   

7.
Increased perception of predation risk can cause changes in activity, feeding and reproductive behavior in a wide range of taxa. Many small mammals in the temperate zone exhibit fluctuations in body mass in response to changing photoperiod. Bank voles lose body mass in winter which they regain when photoperiod increases in the spring. To determine if predation risk affects seasonal changes in body mass (BM), bank voles were exposed to two concentrations (low: LC and high: HC) of weasel feces. Food intake (FI) and daily energy expenditure (DEE) were measured to establish if differences in body mass were due to adjustment in energy intake or expenditure. Fecal corticosterone (CORT) was measured to assess whether the voles had detected and responded to predator feces as a physiological stressor. Voles of both sexes had higher levels of fecal CORT in the groups exposed to weasel feces compared to controls. Voles responded to the predator feces in a sex- and concentration-dependent manner. Males responded to LC feces by gaining less mass following the change in photoperiod. This was mediated by reduced FI and higher DEE. Female voles also gained less BM in response to HC feces, but increased both FI and DEE. We hypothesize that males may gain a short-term advantage by lowering BM in response to predation risk, which may be regained without affecting reproductive success. The consequences of mass loss in females may be more significant as this may delay the onset of breeding or reduce the size or number of young, thereby negatively affecting breeding success.  相似文献   

8.
North Western European populations of White Storks (Ciconia ciconia) appear to have been saved from extinction by settling, i.e. stopping migration. Settled storks exposed to winter conditions must cope with periods of potentially high energy demands that would otherwise be avoided by the migration process. Doubly labeled water (DLW) was therefore used to examine the seasonal variation (summer vs winter) in daily energy expenditure (DEE) and the body composition of adult and immature storks of both sexes. Male White Storks showed a higher DEE over the winter period than in summer compared with females; in particular, immature males exhibited greater energy expenditure in winter than adult males. Thus, the DEE did not significantly differ between summer and winter (except for immature males), reflecting an absence of thermoregulation cost in winter. For both age classes, total body mass increased in winter, which was mainly due to an increase in fat mass. Adult storks were 5% heavier than immature storks. The sexes differed in body mass, with males weighing significantly more than females by 11%. Mean LBM (lean body mass) was 8.5% higher in adults than in immatures, and was 11.5% higher in males compared with females. Between their first and second summers, immatures accumulated a lean body mass to finally reach the same values as adults, indicating a phase of muscle development. The mean fat mass of the storks did not differ between age classes or between sexes. Based on physiological parameters, this study shows that settled White Storks are able to cope with mild winter periods when they are artificially provided with food. In a view to preserve favourable habitats for this species, it is therefore necessary to decide on a plan of action for breeding areas.  相似文献   

9.
Daily energy expenditure (DEE) was measured in sympatric populations of red and grey squirrels using the doubly labelled water technique. Grey squirrels had significantly higher DEEs than red squirrels. However, the difference between the species was not separable from the effects of body mass on DEE. The DEEs of both species were in accordance with published allometric predictions incorporating body mass and ambient temperature. The differences in energetic requirements and social dominance, both consequences of body size, may represent means by which grey squirrels exert more interspecific competition on red squirrels than do conspecifics, potentially driving populations below viable levels in some sites.  相似文献   

10.
We measured daily energy expenditure (DEE) continuously for a whole year in a free ranging bird, the macaroni penguin Eudyptes chrysolophus . We combined these measurements with concurrently recorded foraging behaviour, and literature information on body mass and dietary factors to estimate prey consumption rates and foraging success. DEE was at a maximum during late chick-rearing but was equally high during all other active phases of the breeding season. DEE was approximately 4×resting metabolic rate, which accords with established theory and suggests a common 'energetic ceiling' throughout the summer period. However, whether this represents a maximum in physiological capacity, or a rate which optimises fitness is still unclear. Rates of prey consumption and foraging success followed different patterns from daily energy expenditure. Daily prey consumption was high as the penguins prepared for long fasts associated with moulting and incubation but relatively low during chick-rearing, when foraging areas were restricted and foraging success lower. It appears that the energy intake of macaroni penguins is subject to extrinisic or environmental constraints rather than to intrinsic physiological limits.  相似文献   

11.
During moderate calorie restriction (CR) the heterotherm Microcebus murinus is able to maintain a stable energy balance whatever the season, even if only wintering animals enter into torpor. To understand its energy saving strategies to respond to food shortages, we assessed protein and energy metabolisms associated with wintering torpor expression or summering torpor avoidance. We investigated body composition, whole body protein turnover, and daily energy expenditure (DEE), during a graded (40 and 80%) 35-day CR in short-days (winter; SD40 and SD80, respectively) and long-days (summer; LD40 and LD80, respectively) acclimated animals. LD40 animals showed no change in fat mass (FM) but a 12% fat free mass (FFM) reduction. Protein balance being positive after CR, the FFM loss was early and rapid. The 25% DEE reduction, in LD40 group was mainly explained by FFM changes. LD80 animals showed a steady body mass loss and were excluded from the CR trial at day 22, reaching a survival-threatened body mass. No data were available for this group. SD40 animals significantly decreased their FM level by 21%, but maintained FFM. Protein sparing was achieved through a 35 and 39% decrease in protein synthesis and catabolism (protein turnover), respectively, overall maintaining nitrogen balance. The 21% reduction in energy requirement was explained by the 30% nitrogen flux drop but also by torpor as DEE FFM-adjusted remained 13% lower compared to ad-libitum. SD80 animals were unable to maintain energy and nitrogen balances, losing both FM and FFM. Thus summering mouse lemurs equilibrate energy balance by a rapid loss of active metabolic mass without using torpor, whereas wintering animals spare protein and energy through increased torpor expression. Both strategies have direct fitness implication: 1) to maintain activities at a lower body size during the mating season and 2) to preserve an optimal wintering muscle mass and function.  相似文献   

12.
Summary We have analyzed seasonal shifts of energy and time allocation in a population of golden-mantled ground squirrels (Spermophilus saturatus) by directly measuring total daily energy expenditure (DEE) with an isotopic technique (doubly labeled water=dlw), and by estimating components of total DEE through an integration of field behavioral observations with laboratory-measured rates of energy expenditure (oxygen consumption) associated with major behavioral and physiological states. Hibernation laster about 7 1/2 months, and the 4 1/2-month activity season consisted of mating, a 28-d gestation of 3–5 young, 5 1/2 weeks of postnatal growth building to a peak in lactation just before the young emerged above ground, an additional 2–3-week period of maternal care before dispersal, and finally restoration of body mass preceding hibernation. Although the hibernation season comprised nearly two-thirds of the year, it involved only 13–17% of annual energy expenditure, leaving about 85% of energy expenditure for the active season. Ground squirrels were actually present on the surface for only about 11% of the year's time, and the foraging time required to obtain the total annual energy supply amounted to only about 2% of the year's time. The squirrels fed mainly on herbs in the early season and hypogeous fungi later; both were used extensively during peak lactation when female energy expenditure and demand were maximal. Average daily foraging time increased steadily throughout the season to a maximum of 28% of aboveground time as availability of greens diminished and fungus predominated in the diet; time availability did not limit foraging since the animals sat on average for 65% of the daily surface time of about 7 h. Timing of reproduction is apparently optimized such that peak reproductive energy demands are matched with maximal food availability and moderate thermal conditions that minimize energy demand. Despite the greater body mass of males, the greatest total DEE (measured by dlw) of any squirrels at any time of year was that of females during peak lactation. For production of young and lactation through above-ground emergence of an average litter of 2.7, females required a total energy increase of 24% above annual nonreproductive metabolism. Yearling females all bred and performed similarly to older females, yet some costs were greater because the yearlings began and ended hibernation at smaller mass, compensated by giving birth later, and finally showed a greater absolute increase in body mass over the active season than older females. Annual metabolic energy expenditure of breeding males was about 18% greater than that of females, due to greater male body mass. Yet the annual energy intake requirement for both sexes was essentially identical (about 42MJ) due to the greater reproductive export by females in the form of newborn and milk. During the mating season males showed wide-ranging exploratory behavior and social interactions, including aggression, that involved considerable locomotory energy expenditures. Although we did not directly account for the energetics of these specific reproductive behaviors, they are critical to male reproductive success and on a daily basis they probably involved much greater energy expenditure than sperm production. Some yearling males avoided these costs by foregoing testicular development, yet they allocated four times as much energy to growth as older males, thereby increasing somatic condition for the future.  相似文献   

13.
1. The absolute energy needs of small animals are generally lower than those of larger animals. This should drive higher mortality of larger animals, when the environmental conditions deteriorate. However, demonstration of the effect of energy constraints on survivals proved difficult, because the range of body mass within species is generally too small to produce enough variation for studying such an effect. An opportunity for an intraspecific study comes from weasels inhabiting the Bia?owie?a Forest (north-eastern Poland), which are characterized by a threefold variation in body mass. 2. We assumed that in summer larger weasel males are favoured by sexual selection, because they are more successful when competing for mates. We then tested whether they suffer higher mortality in winter, because they have difficulty finding sufficient food to satisfy their energy needs and/or because the additional foraging time would result in increased exposure to predation. 3. We measured daily energy expenditures (DEE) of overwintering weasel males using the doubly labelled water (DLW) technique. We constructed an energetic model predicting how individuals of different size are able to balance their energy budgets feeding on large and small prey while minimizing time spent hunting, thereby reducing their own exposure to predation. 4. The range of body mass in overwintering weasels predicted by our model corresponded very well with the distribution of prey body mass in three different habitats within our study area. Larger individuals were able to compensate for higher food requirements by using habitats with larger prey species than those available to smaller male weasels. This effectively offset the expected negative association between body mass and winter survival predicted from considerations of energy balance. 5. Our results show how energetic constraints affect body mass and spatial segregation of a species at the intra-specific level not only across large geographical ranges, but also within a relatively small area.  相似文献   

14.
Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for fractionation. Using Nagy's equation, DEE was overestimated by 8%. Under the assumption that 50% of total water flux fractionates, the alternative equation by Lifson and McClintock (LM-35) DEE was underestimated by 5%. The best fit between estimates of DEE based on DLW and energy balance measurements was derived by assuming that 32% of total water flux (TWF) is fractionated. We conclude that the outcome of DLW experiments is sensitive to assumptions regarding evaporative water loss, and thus recommend Speakman's equation 7.17 for use with bats.  相似文献   

15.
In many bird populations, variation in the timing of reproduction exists but it is not obvious how this variation is maintained as timing has substantial fitness consequences. Daily energy expenditure (DEE) during the egg laying period increases with decreasing temperatures and thus perhaps only females that can produce eggs at low energetic cost will lay early in the season, at low temperatures. We tested whether late laying females have a higher daily energy expenditure during egg laying than early laying females in 43 great tits (Parus major), by comparing on the same day the DEE of early females late in their laying sequence with DEE of late females early in their egg laying sequence. We also validated the assumption that there are no within female differences in DEE within the egg laying sequence. We found a negative effect of temperature and a positive effect of female body mass on DEE but no evidence for differences in DEE between early and late laying females. However, costs incurred during egg laying may have carry-over effects later in the breeding cycle and if such carry-over effects differ for early and late laying females this could contribute to the maintenance of phenotypic variation in laying dates.  相似文献   

16.
Different reproductive strategies of males and females may lead to the evolution of differences in their energetic costs of reproduction, overall energetic requirements and physiological performances. Sexual dimorphism is often associated with costly behaviours (e.g. large males might have a competitive advantage in fighting, which is energetically expensive). However, few studies of mammals have directly compared the energy costs of reproductive activities between sexes. We compared the daily energy expenditure (DEE) and resting metabolic rate (RMR) of males and females of two species of mole-rat, Bathyergus janetta and Georychus capensis (the former is sexually dimorphic in body size and the latter is not) during a period of intense digging when males seek females. We hypothesized that large body size might be indicative of greater digging or fighting capabilities, and hence greater mass-independent DEE values in males of the sexually dimorphic species. In contrast to this prediction, although absolute values of DEE were greater in B. janetta males, mass-independent values were not. No differences were apparent between sexes in G. capensis. By comparison, although RMR values were greater in B. janetta than G. capensis, no differences were apparent between the sexes for either species. The energy cost of dimorphism is most likely to be the cost of maintenance of a large body size, and not the cost of behaviours performed when an individual is large.  相似文献   

17.
The onset of mating in yellow-pine chipmunks (Tamias amoenus) follows emergence from a prolonged period of energy conservation during hibernation. Energy expenditures are greatly accelerated to meet the demands of the reproductive season. When emerging from hibernation, typical male chipmunks (breeders) have enlarged testes and a high level of plasma testosterone (T). However, certain males that do not participate in reproduction (nonbreeders) maintain small testes and low plasma T levels and emerge several weeks later than the breeders. The timing of the terminal arousal from hibernation and onset of mating are associated with increased plasma T levels. Experimental elevation of T levels in T. amoenus outside the mating season has been associated with a decrease in body mass, further suggesting an effect of T on energy balance. To test this hypothesis, we measured daily energy expenditure (DEE) in free-living, nonbreeding male chipmunks in the presence and absence of a T-implant. We also measured DEE in breeding males when endogenous T levels were high. DEE of the nonbreeders was not affected by our manipulation of plasma T, and the DEE of breeding males did not differ from that of nonbreeders. We conclude that energy expenditure on a daily basis in male yellow-pine chipmunks is not influenced by levels of T. However, on a seasonal basis, the earlier emergence from hibernation by breeding males, which appears to be influenced by T, represents an overall seasonal energy expenditure that exceeds that of nonbreeding males.  相似文献   

18.
The effects of diets differing in energy and water content on the energy turnover rates and water flux of four Gerbillurus species have been examined in the laboratory. Gerbillurus tytonis. a dune species, had higher than predicted daily energy expenditure (DEE) and high water turnover rates (WTR) for a small desert mammal. The large Gerbillurus setzeri , which occurs on gravel plains, has slightly lower than predicted DEE and lower WTR than the other gerbil species studied. The Gerbillurus species examined have DEE and WTR that are affected by the protein content and potential water yield of food eaten. The importance of diet selection for water and energy budgets are discussed as adaptive strategies employed for survival and reproduction within the southern African arid zone.  相似文献   

19.
Lactation is the most energetically expensive period for female mammals and is associated with some of the highest sustained metabolic rates (SusMR) in vertebrates (reported as total energy throughput). Females typically deal with this energy demand by increasing food intake and the structure of the alimentary tract may act as the central constraint to ceilings on SusMR at about seven times resting or standard metabolic rate (SMR). However, demands of lactation may also be met by using a form of metabolic compensation such as reducing locomotor activities or entering torpor. In some phocid seals, cetaceans and bears, females fast throughout lactation and thus cannot offset the high energetic costs of lactation through increased food intake. We demonstrate that fasting grey seal females sustain, for several weeks, one of the highest total daily energy expenditures (DEE; 7.4 x SMR) reported in mammals, while progressively reducing maintenance metabolic expenditures during lactation through means not explained by reduction in lean body mass or behavioural changes. Simultaneously, the energy-exported in milk is progressively increased, associated with increased lipoprotein lipase activity in the mammary gland, resulting in greater offspring growth. Our results suggest that females use compensatory mechanisms to help meet the extraordinary energetic costs of lactation. Additionally, although the concepts of SusMR and ceilings on total DEE may be somewhat different in fasting lactating species, our data on phocid seals demonstrate that metabolic ceilings on milk energy output, in general, are not constrained by the same kind of peripheral limitations as are other energy-consuming tissues. In phocid seals, the high ceilings on DEE during lactation, coupled with metabolic compensation, are undoubtedly important factors enabling shortened lactation.  相似文献   

20.
1. Marine Iguanas ( Amblyrhynchus cristatus ) inhabiting the rocky shores of the Galápagos Islands apply two foraging strategies, intertidal and subtidal foraging, in a seasonal climate. Effects of both foraging strategy and seasonality on the daily energy expenditure (DEE) were measured using doubly labelled water.
2. Difference in foraging mode did not result in significant differences in DEE.
3. On Santa Fé the DEE in the warm season was significantly higher than in the cool season (67·8 ± 21·8 kJ kg–0·8 day–1 vs 38·0 kJ kg–0·8 day–1). This difference can be explained by body temperature. A model estimate of the body temperature was used to predict monthly DEE figures, giving a year round budget. On average a 1-kg iguana would need only 47 kJ day–1, or 17 mJ year –1. This is lower than previous estimates in which body temperatures were not taken into account.
4. The water flux of the Marine Iguana increases with increasing foraging time. The linear rise per minute foraging is roughly two times as high for subtidally foraging animals as for intertidal foragers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号