首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have constructed a restriction map for the genome of bacteriophage MX-8 from Myxococcus xanthus using the enzymes PvuII, MboI, and EcoRI. The phage genome size, as determined by restriction analysis, is 51.7±0.6 Kb. Double digestions, redigestions of isolated fragments, and crossed-contact hybridization of partial digestion products show that the restriction map is circular. Restriction analysis and Southern hybridization show that the phage DNA molecules are packaged sequentially from a concatemer starting from a specific site which we have mapped. The DNA molecules have an average terminal redundancy of approximately 8% and are circularly permuted over at least 40% of the genome.  相似文献   

2.
Summary A cleavage map of the generalized transducing staphylococcal phage 11 DNA has been constructed by reciprocal double digestion. All three BglI, the six BglII, the three PstI, and 11 out of 15 EcoRI sites have been mapped. The map is circular, with a total length of 42 kb, and has been divided into 100 map units. The phage DNA is cyclically permuted and has a terminal redundancy of about 11 kb. The preferential starting point and direction for packaging DNA lies at map unit 79 and proceeds towards higher map units.  相似文献   

3.
The enormous size of the human dystrophin gene (2300 kb) has so far hindered the analysis of its organization and the characterization at the genomic level of the deletion and duplication mutations causing Duchenne or Becker muscular dystrophy. A detailed physical map of the gene locus would considerably simplify these studies. We constructed a refined, long-range restriction map of the entire human dystrophin gene, using 12 overlapping YAC clones as DNA sources. The sites for six rare cutting enzymes (SfiI, NruI, EagI, BssHII, SacII, and NotI) were mapped by partial digest analysis of YACs over a region of 2600 kb, within a level of resolution of about 10 kb. Such a map provides the first detailed representation of the physical structure of the dystrophin gene. It will be useful for mapping unlocalized exons and, eventually, for the characterization of deletions and duplications leading to disease.  相似文献   

4.
The restriction endonuclease from Haemophilus parainfluenzae, endoR·HpaI cleaves λcI857s7 DNA into 14 fragments. The sizes of these fragments were determined and a physical map was constructed. The ordering of the fragments was carried out using different deletion and substitution mutants of λ phage, double cleavages with another restriction enzyme, endoR·BamHI, and partial protection of individual HpaI recognition sites by the antibiotics distamycin A and actinomycin D. HpaI produces fragments from the left arm of the λ DNA genome, which may help in investigating the structure and function of this part of the phage.  相似文献   

5.
The temperate bacteriophage BK5-T was isolated from Streptococcus cremoris BK5 by induction with mitomycin C. Electron microscopy revealed that BK5-T DNA consists of linear molecules, ranging in size from 39.7 to 46 kilobase pairs. Restriction analysis of self-ligated BK5-T DNA showed that the ends of the DNA were not cohesive. The EcoRI restriction fragments of the phage genome were cloned into pACYC184. Restriction enzyme analysis of both the phage DNA and the cloned EcoRI fragments with EcoRI, BstEII, PstI, ClaI, and XbaI yielded a 37.6-kilobase-pair-long circular restriction map for the phage genome. It was concluded that the BK5-T DNA molecules in the population differ in their sequence by a circular permutation and that individual DNA molecules are terminally redundant. The map location of the sites at which packaging of BK5-T DNA into phage heads is initiated (pac) and at which the phage integrates into the bacterial chromosome (att) were established.  相似文献   

6.
Summary A cleavage map of bacteriophage P1 DNA was established by reciprocal double digestion with various restriction endonucleases. The enzymes used and, in parenthesis, the number of their cleavage sites on the P1clts genome are: PstI (1), HindIII (3), BglII (11), BamHI (14) and EcoRI (26). The relative order of the PstI, HindIII and BglII sites, as well as the order of 13 out of the 14 BamHI sites and of 17 out of the 26 EcoRI sites was determined. The P1 genome was divided into 100 map units and the PstI site was arbitrarily chosen as reference point at map unit 20.DNA packaging into phage heads starts preferentially at map unit 92 and it proceeds towards higher map units. The two inverted repeat sequences of P1 DNA map about at units 30 and 34.  相似文献   

7.
Summary A genetic map of phage 186 has been constructed, using the frequency of marker rescue from 186 mutant prophages for genes to the left of att, and int promoted recombination for genes to its right. At the left end of the genome lie 7 genes involved in the formation of the phage head, followed to the right by the lysis gene P, a gene (O) of unknown function, and a group of 11 genes involved in the formation of the phage tail. Gene B, the late control gene, lies to the right of this group but to the left of the phage attachment site. To the right of the att site lie the non-essential genes (cI and cII) involved in lysogen formation and the gene (A) required for 186 DNA synthesis.  相似文献   

8.
Summary A physical map of the actinophage VWB has been constructed using the restriction endonucleases BglII, ClaI, EcoRI, EcoRV, HindIII, KpnI and SphI. Phage VWB, genome size 47.3 kb, propagates on Streptomyces venezuelae, and it can also lysogenise this species. The three BglII-generated fragments of VWB DNA were cloned in pBR322, and subsequently mapped. In this manner the restriction map of the VWB phage genome was constructed.Abbreviations dam DNA adenine methylase activity - kb kilobase pairs - :: novel joint  相似文献   

9.
Summary The phage 11 of R. meliloti performs generalized transduction. This was confirmed by the variety of single markers transferred and by separating transducing particles containing BUdR-labelled bacterial DNA. The transduction frequencies depended on the marker. Linked alleles were mapped by cotransduction on fragments of bacterial DNA equal in size to the phage DNA. With crosses between antibiotic resistancy and auxotrophic markers a partial map was constructed with str, cml, pur-19, and leu-44 sites. With a few multi-auxotrophic mutants linkage data of conjugation were compared with the linkage by cotransduction.  相似文献   

10.
A new bacteriophage, designated F4, was isolated from the ruminal fluid of a calf. The host range of F4 phage was limited to five strains ofStreptococcus bovis out of ten tested on which clear plaques 0.6–1.2 mm in diameter were found. Bacteriophage F4 had an elongated head 75 nm long and 33 nm wide with a noncontractile flexible tail 100 nm in length on average. This phage is defective in the generation of plaques at low multiplicities of infection. Its genome consists of double-stranded linear DNA of 60.38 kb lacking cohesive ends. The F4 DNA was analyzed with 13 restriction enzymes. The restriction enzymes that did not cleave it wereBamHI,EcoRI,PvuI, andSmaI. The circular restriction map was constructed with four restriction endonucleases (XbaI,EcoI,SalI, andBglI).  相似文献   

11.
Summary Comparative restriction cleavage analysis of the genomes of bacteriophage P7, of several recombinant phages between P7 and P1, and of bacteriophage P1 allowed to draw PstI, BglII, BamHI and HindIII cleavage maps of all genomes studied. The data obtained complement Yun and Vapnek's (1977) conclusions with regard to areas of major nonhomology based on electron microscopical heteroduplex analysis and they identify several additional minor differences between P1 and P7. The use of hybrid phage strains allowed to locate the genes for particular functions on the physical genome map.Abbreviations Cm chloramphenicol - Ap ampicillin - bp base pairs - kb kilo-base pairs  相似文献   

12.
Summary Fragments of DNA of the temperate phage P2, generated by treatment with the restriction enzyme PstI, have been cloned into the plasmid pBR322. One such fragment, which has its endpoints within phage genes T and C, carries the structural P2 int gene as well as its promoter and the phage att site. When introduced into a suitable bacterial host, the cloned fragment mediates the integration and excision of int - mutants of P2 and recombination within the phage att site in mixed infection. All these activities are independent of the orientation of the fragment within the plasmid.When introduced into minicells, the fragment produces, in addition to the products of genes D and U, a protein of 35–37,000 daltons identified as the int protein. A study of the map location of two amber int mutants, together with the sizes of the polypeptides they produce, indicates that the P2 int gene is transcribed from right to left on the P2 map, i.e. starting near gene C and proceeding toward att.  相似文献   

13.
Summary Large quantities of dihydrofolate reductase are synthesized in bacteriophage T5 infected E. coli cells. Some evidence that this enzyme is the product of a viral gene was published by Mathews (1967). Further evidence is presented now by showing that the newly synthesized enzyme differs from the preexisting E. coli reductase in molecular weight and salt solubility.The expression of the T5 dihydrofolate reductase gene was not affected by deletions in the del region of the phage genome. The map position of the reductase gene was determined by marker rescue experiments designed as helped transfection procedure: When E. coli B cells were preinfected with T5 dihydrofolate reductase amber mutants, made competent, and transfected with T5 wild type DNA, viable phages were obtained. Wild type recombinant phages were observed, when the transfecting DNA had been digested with the restriction endonucleases EcoRI, HpaI, PstI, and SalI. No rescue occurred when the DNA had been digested with AluI, EcoRII, HindII, HindIII, MboII, Sau3A, and XbaI. Single EcoRI, HpaI, and SalI restriction fragments were isolated and found to rescue the dihydrofolate reductase gene. Their common overlapping sequence corresponds to 8.6% of the phage DNA, a segment of about 10,000 base pairs length, which extends from position 0.37 to position 0.46 of the physical map. After cleaving this segment at its single HindIII recognition site marker rescue no longer occurred. From these results it was concluded that the dihydrofolate reductase gene either lies at or very close to this site at position 0.4.The helped transfection method was also used to rescue T5 mutants with defects in the genes C2 and D9. Gene C2 was localized on an EcoRI fragment that covers the DNA from map position 0.08 to map position 0.25. By localizing the two genes B3 and C2 on the restriction map of the T5 DNA a correlation of the genetic and the physical maps of the T5 genome has been established. Abbreviations. The symbols for T5 phages follow those of McCorquodale (1975) and the nomenclature for restriction nucleases that of Smith and Nathans (1973). kb=kilo base pairs  相似文献   

14.
    
Summary A replication map for strain C of Escherichia coli was constructed using the three different attachment sites, location I, II and III, of prophage P2, and the one of prophage in a marker-frequency analysis. Marker-frequencies for the four prophage locations were estimated by hybridization of radioactive phage DNA with DNA extracted from exponentially growing lysogenic bacteria, and immobilized on nitrocellulose membrane filters.The results obtained were interpreted according to a model of bidirectional symmetric chromosome replication, with the replication points starting in the left upper quadrant of the genetic map (at 86±1 minutes on a 101 minute map), and proceeding simultaneously in both directions to a terminus in the right lower quadrant. The results are inconsistent with a unidirectional mode of chromosome replication.  相似文献   

15.
The genomes of phage I3 and its host Mycobacterium smegmatis have been compared. From thermal melting studies the GC contents of DNA from mycobacteriophage I3 and its host M. smegmatis were found to be 66%. A new method, based only on the initial rates of reassociation, has been developed for calculating the DNA homology. Analysis of DNA reassociation kinetics suggested the presence of one equivalent of the phage I3 genome within the M. smegmatis genome. Southern analysis revealed the presence of almost all of the phage I3 specific sequences within the host genome.  相似文献   

16.
Abstract The genome of Buchnera, an endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum, was characterized by pulse-field gel electrophoresis (PFGE) as a circular DNA molecule of 657 kb. The enzymes I-CeuI, CpoI, ApaI, SmaI, NaeI, SacII, MluI, FspI, and NruI were used to cleave the DNA of Buchnera into fragments of suitable size for PFGE analysis. A physical map of the Buchnera genome, including restriction fragments from seven of these enzymes, was constructed using double cutting, partial digestion, and hybridization with linking fragments, and 29 genes and operons were localized on the map. In addition, the genomic map of Buchnera was compared with those of Escherichia coli and Haemophilus influenzae. The gene order in Buchnera is more similar to that of E. coli than to H. influenzae. The dramatic shrinkage of the Buchnera genome compared with those of other members of the closely related Enterobacteriaceae family is discussed in terms of evolution under the influence of the intracellular symbiotic association. Received: 20 May 1998 / Accepted: 1 July 1998  相似文献   

17.
Groundnut rosette disease is the most destructive viral disease of peanut in Africa and can cause serious yield losses under favourable conditions. The development of disease-resistant cultivars is the most effective control strategy. Resistance to the aphid vector, Aphis craccivora, was identified in the breeding line ICG 12991 and is controlled by a single recessive gene. Bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) analysis were employed to identify DNA markers linked to aphid resistance and for the development of a partial genetic linkage map. A F2:3 population was developed from a cross using the aphid-resistant parent ICG 12991. Genotyping was carried out in the F2 generation and phenotyping in the F3 generation. Results were used to assign individual F2 lines as homozygous-resistant, homozygous-susceptible or segregating. A total of 308 AFLP (20 EcoRI+3/MseI+3, 144 MluI+3/MseI+3 and 144 PstI+3/MseI+3) primer combinations were used to identify markers associated with aphid resistance in the F2:3 population. Twenty putative markers were identified, of which 12 mapped to five linkage groups covering a map distance of 139.4 cM. A single recessive gene was mapped on linkage group 1, 3.9 cM from a marker originating from the susceptible parent, that explained 76.1% of the phenotypic variation for aphid resistance. This study represents the first report on the identification of molecular markers closely linked to aphid resistance to groundnut rosette disease and the construction of the first partial genetic linkage map for cultivated peanut.  相似文献   

18.
Summary Broad-bean (Vicia faba) chloroplast DNA (cpDNA) was isolated and characterized. The intact DNA is circular and has a molecular weight of 79.8x 106 dalton. Electron microscopic analysis of self-annealed intact single-strand circles show that it does not have a large double-stranded inverse repeat as seen in spinach chloroplast DNA. Only one ribosomal RNA gene (one set of 16S and 23S rRNA sequences) was found in preparations of R-loops between the Vicia rRNA and cpDNA circles. A restriction enzyme map for SalI and KpnI was derived by comparing the partial denaturation pattern of the fragments with the pattern of the intact circle. The map was confirmed by gel analysis. The ribosomal RNA gene was localized on the SalI fragment 3b by R-loop analysis. SalI fragment 1a although it contains a G-C rich region did not form R-loops with rRNA. Partial denaturation patterns of spinach cpDNA circles and BglI fragments were determined and from this the position of the fragments mapped. This confirmed the reliability of these methods for the arrangement of restriction enzyme fragments along circular molecules. The structures of the two cpDNAs were compared.  相似文献   

19.
A combined physical and genetic map of Rhizobium leguminosarum biovar trifolii TA1 (RtTA1) genome was constructed and used in comparison of chromosomal organization with the closely related R. leguminosarum bv. viciae 3841 (Rlv) and Rhizobium etli CNF42 (Rhe). This approach allowed evaluation of chromosome and genome plasticity and provided important insights into R. leguminosarum lineage diversity. MssI, SmiI, PacI, and I-CeuI restriction endonucleases were chosen for the analysis, generating fragments with suitable size distributions for RtTA1 genome mapping. The fragments were assembled into a physical map using a combination of complementary methods, including multiple and partial digests of genomic DNA, hybridization with homologous gene probes, and cross-Southern hybridization. About 100 genetic markers were located on the RtTA1 restriction map. Comparison of genetic maps of RtTA1, Rlv, and Rhe revealed extensive chromosomal colinearity despite differences in the physical maps. The comparison provides bases for comprehensive analysis of the evolution of R. leguminosarum genome, indicating that, at least on the chromosomal level, no major rearrangements had occurred after the evolutionary divergence of R. leguminosarum biovars. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary Tn7 insertions into the genome of F116L, a Pseudomonas aeruginosa generalized transducing phage, were isolated by repeated cycles of transducing phage, were of strains lysogenic for F116cts mutants with selection for trimethoprim resistance (Tp1). Two non-defective F116Lcts:Tn7 phage were characterized. They have reduced plaquing ability, produced non-lysogenic Tpr transductants, and have yielded a deletion mutant of the phage genome upon selection for plaque formation in single infection. F116L DNA is circularly permuted and terminally redundant. A circular restriction map of 61.7 kb has been defined, and a cleavage site common to many enzymes has been identified at coordinate 23.3 kb on the map. It is presumed that this site represents the sequence for the initiation of DNA encapsidation by a headful packaging mode. The Tn7 insertion targets and a 13.4 kb deletion define regions of the F116L genome non-essential for either vegetative growth or lysogenization. The restriction map of Tn7 has been determined for five enzymes. Non-lysogenic Tpr transuctants reveal a Tn7 insertion hot-spot in the P. aeruginosa genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号