首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated membrane interactions and perturbations induced by NH(2)-DKWASLWNWFNITNWLWYIK-COOH (HIV(c)), representing the membrane interface-partitioning region that precedes the transmembrane anchor of the human immunodeficiency virus type-1 gp41 fusion protein. The HIV(c) peptide bound with high affinity to electrically neutral vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine and cholesterol (molar ratio, 1:1:1), and induced vesicle leakage and lipid mixing. Infrared spectra suggest that these effects were promoted by membrane-associated peptides adopting an alpha-helical conformation. A sequence representing a defective gp41 phenotype unable to mediate both cell-cell fusion and virus entry, was equally unable to induce vesicle fusion, and adopted a non-helical conformation in the membrane. We conclude that membrane perturbation and adoption of the alpha-helical conformation by this gp41 region might be functionally meaningful.  相似文献   

2.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   

3.
To infect target cells, HIV-1 employs a virally encoded transmembrane protein (gp41) to fuse its viral envelope with the target cell plasma membrane. We describe the gp41 ectodomain as comprised of N- and C-terminal subdomains, each containing a heptad repeat as well as a fusogenic region, whose organization is mirrored by the intervening loop region. Recent evidence indicates that the gp41 directed fusion reaction proceeds to initial pore formation prior to gp41 folding into its low energy hairpin conformation. This implies that exposed regions of the gp41 ectodomain are responsible for the bulk of the fusion work, probably through direct protein-membrane interactions. Prevalent fusion models contend that the gp41 ectodomain initially interacts with the target cell surface through its highly hydrophobic N terminus, which is believed to insert into the target membrane, thereby linking the virus to the target cell. This arrangement allows the N-terminal subdomain to interact with the target cell surface, whereas the C-terminal subdomain remains proximal to the virion, allowing interaction with the viral envelope. The composition of the viral envelope and the target cell surface differ due to the virus budding from raft microdomains. We show here that constructs corresponding to the C-terminal subdomain specifically destabilize ordered and cholesterol rich membranes (33 molar %), whereas the N-terminal subdomain is more effective in fusing both unordered cholesterol-free membranes and those containing lower amounts of cholesterol (10 molar %). Moreover we show that, in the context of the C-terminal subdomain, the heptad repeat contributes helical structure, which may describe the enhanced inhibitory effect of the C-terminal subdomain relative to the C-terminal heptad repeat (C34) alone. Our results are discussed in light of recent findings that showcase the role of exposed gp41 regions in effecting membrane fusion.  相似文献   

4.
The pre-hairpin intermediate of gp41 from the human immunodeficiency virus (HIV) is the target for two classes of fusion inhibitors that bind to the C-terminal region or the trimeric coiled-coil of N-terminal helices, thereby preventing formation of the fusogenic trimer of hairpins. Using rational design, two 36-residue peptides, N36(Mut(e,g)) and N36(Mut(a,d)), were derived from the parent N36 peptide comprising the N-terminal helix of the gp41 ectodomain (residues 546-581 of HIV-1 envelope), characterized by analytical ultracentrifugation and CD, and assessed for their ability to inhibit HIV fusion using a quantitative vaccinia virus-based fusion assay. N36(Mut(e,g)) contains nine amino acid substitutions designed to disrupt interactions with the C-terminal region of gp41 while preserving contacts governing the formation of the trimeric coiled-coil. N36(Mut(a,d)) contains nine substitutions designed to block formation of the trimeric coiled-coil but retains residues that interact with the C-terminal region of gp41. N36(Mut(a,d)) is monomeric, is largely random coil, does not interact with the C34 peptide derived from the C-terminal region of gp41 (residues 628-661), and does not inhibit fusion. The trimeric coiled-coil structure is therefore a prerequisite for interaction with the C-terminal region of gp41. N36(Mut(e,g)) forms a monodisperse, helical trimer in solution, does not interact with C34, and yet inhibits fusion about 50-fold more effectively than the parent N36 peptide (IC(50) approximately 308 nm versus approximately 16 microm). These results indicate that N36(Mut(e,g)) acts by disrupting the homotrimeric coiled-coil of N-terminal helices in the pre-hairpin intermediate to form heterotrimers. Thus N36(Mut(e,g)) represents a novel third class of gp41-targeted HIV fusion inhibitor. A quantitative model describing the interaction of N36(Mut(e,g)) with the pre-hairpin intermediate is presented.  相似文献   

5.
The fusion peptide of HIV-1 gp41 is formed by the 16 N-terminal residues of the protein. This 16-amino acid peptide, in common with several other viral fusion peptides, caused a reduction in the bilayer to hexagonal phase transition temperature of dipalmitoleoylphosphatidylethanolamine (T(H)), suggesting its ability to promote negative curvature in membranes. Surprisingly, an elongated peptide corresponding to the 33 N-terminal amino acids raised T(H), although it was more potent than the 16-amino acid fusion peptide in inducing lipid mixing with large unilamellar liposomes of 1:1:1 dioleoylphosphatidylethanolamine/dioleoylphosphatidylcholine/choleste rol. The 17-amino acid C-terminal fragment of the peptide can induce membrane fusion by itself, if it is anchored to a membrane by palmitoylation of the amino terminus, indicating that the additional 17 hydrophilic amino acids contribute to the fusogenic potency of the peptide. This is not solely a consequence of the palmitoylation, as a random peptide with the same amino acid composition with a palmitoyl anchor was less potent in promoting membrane fusion and palmitic acid itself had no fusogenic activity. The 16-amino acid N-terminal fusion peptide and the longer 33-amino acid peptide were labeled with NBD. Fluorescence binding studies indicate that both peptides bind to the membrane with similar affinities, indicating that the increased fusogenic activity of the longer peptide was not a consequence of a greater extent of membrane partitioning. We also determined the secondary structure of the peptides using FTIR spectroscopy. We find that the amino-terminal fusion peptide is inserted into the membrane as a beta-sheet and the 17 C-terminal amino acids lie on the surface of the membrane, adopting an alpha-helical conformation. It was further demonstrated with the use of rhodamine-labeled peptides that the 33-amino acid peptide self-associated in the membrane while the 16-amino acid N-terminal peptide did not. Thus, the 16-amino acid N-terminal fusion peptide of HIV inserts into the membrane and, like other viral fusion peptides, lowers T(H). In addition, the 17 consecutive amino acids enhance the fusogenic activity of the fusion peptide presumably by promoting its self-association.  相似文献   

6.
gp41 is the protein responsible for the process of membrane fusion that allows primate lentiviruses (HIV and SIV) to enter into their host cells. gp41 ectodomain contains an N-terminal and a C-terminal heptad repeat region (NHR and CHR) connected by an immunodominant loop. In the absence of membranes, the NHR and CHR segments fold into a protease-resistant core with a trimeric helical hairpin structure. However, when the immunodominant loop is not present (either in a complex formed by HIV-1 gp41-derived NHR and CHR peptides or by mild treatment with protease of recombinant constructs of HIV-1 gp41 ectodomain, which also lack the N-terminal fusion peptide and the C-terminal Trp-rich region) membrane binding induces a conformational change in the gp41 core structure. Here, we further investigated whether covalently linking the NHR and CHR segments by the immunodominant loop affects this conformational change. Specifically, we analyzed a construct corresponding to a fragment of SIVmac239 gp41ectodomain (residues 27-149, named e-gp41) by means of surface plasmon resonance, Trp and rhodamine fluorescence, ATR-FTIR spectroscopy, and differential scanning calorimetry. Our results suggest that the presence of the loop stabilizes the trimeric helical hairpin both when e-gp41 is in aqueous solution and when it is bound to the membrane surface. Bearing in mind possible differences between HIV-1 and SIV gp41, and considering that the gp41 ectodomain constructs analyzed to date lack the N-terminal fusion peptide and the C-terminal Trp-rich region, we discuss our observations in relation to the mechanism of virus-induced membrane fusion.  相似文献   

7.
The viral envelope glycoprotein gp41 mediates membrane fusion in HIV/SIV infection. gp41 ectodomain (e-gp41, residues 27-149), which was shown to interact with phospholipid membranes, exists in an equilibrium between the monomeric and trimeric states. Here, we analyzed, by intrinsic Trp fluorescence and resonance energy transfer, whether SIV e-gp41-membrane interaction depends on the gp41 oligomeric state. We found that both gp41 monomers and trimers bind membranes, with the monomers' full binding being reached at substantially lower lipid to protein ratios. Furthermore, the different characteristics of the Trp fluorescence of monomers and trimers enabled us to detect binding of each form at concentrations at which both species were present. CD spectroscopy revealed that the secondary structure of gp41 monomers does not change upon membrane binding, suggesting that membrane-bound monomeric-gp41 is a possible target for DP-178, a potent peptide inhibitor of HIV infection. The consequences of the interaction between monomeric and trimeric gp41 with membranes in HIV/SIV infection, its inhibition, and its associated neuropathologies are discussed.  相似文献   

8.
人类免疫缺陷病毒1型(HIV-1)通过其包膜糖蛋白(Env)介导侵入靶细胞.Env由受体特异性结合单位gp120和膜融合单位gp41组成.HIV-1的gp41分为3个功能区:膜外区、跨膜区和膜内区.膜外区是病毒感染时膜融合的主要结构基础;跨膜区通过疏水残基使Env锚定在脂质膜上;膜内区则表现多重功能,参与病毒的感染、复...  相似文献   

9.
Vogel EP  Curtis-Fisk J  Young KM  Weliky DP 《Biochemistry》2011,50(46):10013-10026
Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41.  相似文献   

10.
Changes were introduced into conserved amino acids within the ectodomain of the human immunodeficiency virus type 1 (HIV-1) gp41 transmembrane envelope glycoprotein. The effect of these changes on the structure and function of the HIV-1 envelope glycoproteins was examined. The gp41 glycoprotein contains an amino-terminal fusion peptide (residues 512 to 527) and a disulfide loop near the middle of the extracellular domain (residues 598 to 604). Mutations affecting the hydrophobic sequences between these two regions resulted in two phenotypes. Some changes in amino acids 528 to 562 resulted in a loss of the noncovalent association between gp41 and the gp120 exterior glycoprotein. Amino acid changes in other parts of the gp41 glycoprotein (residues 608 and 628) also resulted in subunit dissociation. Some changes affecting amino acids 568 to 596 resulted in envelope glycoproteins partially or completely defective in mediating membrane fusion. Syncytium formation was more sensitive than virus entry to these changes. Changes in several amino acids from 647 to 675 resulted in higher-than-wild-type syncytium-forming ability. One of these amino acid changes affecting tryptophan 666 resulted in escape from neutralization by an anti-gp41 human monoclonal antibody, 2F5. These results contribute to an understanding of the functional regions of the HIV-1 gp41 ectodomain.  相似文献   

11.
The design and characterization of a chimeric protein, termed N(CCG)-gp41, derived from the ectodomain of human immunodeficiency virus (HIV), type I gp41 is described. N(CCG)-gp41 features an exposed trimeric coiled-coil comprising the N-terminal helices of the gp41 ectodomain. The trimeric coiled-coil is stabilized both by fusion to a minimal thermostable ectodomain of gp41 and by engineered intersubunit disulfide bonds. N(CCG)-gp41 is shown to inhibit HIV envelope-mediated cell fusion at nanomolar concentrations with an IC(50) of 16.1 +/- 2.8 nm. It is proposed that N(CCG)-gp41 targets the exposed C-terminal region of the gp41 ectodomain in its pre-hairpin intermediate state, thereby preventing the formation of the fusogenic form of the gp41 ectodomain, which comprises a highly stable trimer of hairpins arranged in a six-helix bundle. N(CCG)-gp41 has potential as a therapeutic agent for the direct inhibition of HIV cell entry, as an anti-HIV vaccine, and as a component of a rapid throughput assay for screening for small molecule inhibitors of HIV envelope-mediated cell fusion. It is anticipated that antibodies raised against N(CCG)-gp41 may target the trimeric coiled-coil of N-terminal helices of the gp41 ectodomain that is exposed in the pre-hairpin intermediate state in a manner analogous to peptides derived from the C-terminal helix of gp41 that are currently in clinical trials.  相似文献   

12.
R J Owens  C Burke    J K Rose 《Journal of virology》1994,68(1):570-574
A chimeric protein consisting of the human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) ectodomain joined to the transmembrane and cytoplasmic-tail domains of vesicular stomatitis virus G protein lost the ability to fuse CD4+ HeLa cells yet was transported to the cell surface and cleaved normally. These results suggested some critical role of the HIV gp41 transmembrane or cytoplasmic domain in fusion. Subsequent mutagenic analysis of the HIV-1 Env transmembrane domain revealed that the sequence of amino acid residues from positions 696 to 707 of the transmembrane domain was important for fusion function but was not required for anchoring of the Env protein in the lipid bilayer or for transport to the cell surface. Further analysis indicated that the basic residues at positions 696 and 707 were critical for membrane fusion activity, as was the spacing between these residues. These results demonstrate that in addition to providing an anchoring function, the specific amino acid sequence in the transmembrane domain plays a crucial role in the membrane fusion process.  相似文献   

13.
The membrane-proximal external region (MPER) of the gp41 fusion protein of HIV is highly conserved among isolates of this virus and is considered a target for vaccine development. This region also appears to play a role in membrane fusion as well as localization of the virus to cholesterol-rich domains in membranes. The carboxyl terminus of MPER has the sequence LWYIK and appears to have an important role in cholesterol interactions. We have tested how amino acid substitutions that would affect the conformational flexibility of this segment could alter its interaction with cholesterol. We studied a family of peptides (all peptides as N-acetyl-peptide amides) with P, G, or A substituting for W and I of the LWYIK sequence. The peptide having the greatest effect on cholesterol distribution in membranes was the most flexible one, LGYGK. The corresponding mutation in gp41 resulted in a protein retaining 72% of the fusion activity of the wild-type protein. Two other peptides were synthesized, also containing two Gly residues, GWGIK and LWGIG, and did not have the ability to sequester cholesterol as efficiently as LGYGK did. Making the corresponding mutants of gp41 showed that these other two double Gly substitutions resulted in proteins that were much less fusogenic, although they were equally well expressed at the cell surface. The study demonstrates that drastic changes can be made in the LWYIK segment with the retention of a significant fraction of the fusogenic activity, as long as the mutant proteins interact with cholesterol.  相似文献   

14.
Oligomerization of the human immunodeficiency virus type 1 envelope (env) glycoproteins is mediated by the ectodomain of the transmembrane glycoprotein gp41. We report that deletion of gp41 residues 550 to 561 resulted in gp41 sedimenting as a monomer in sucrose gradients, while the gp160 precursor sedimented as a mixture of monomers and oligomers. Deletion of the nearby residues 571 to 582 did not affect the oligomeric structure of gp41 or gp160, but deletion of both sequences resulted in monomeric gp41 and predominantly monomeric gp160. Deletion of residues 655 to 665, adjacent to the membrane-spanning sequence, partially dissociated the gp41 oligomer while not affecting the gp160 oligomeric structure. In contrast, deletion of residues 510 to 518 from the fusogenic hydrophobic N terminus of gp41 did not affect the env glycoprotein oligomeric structure. Even though the mutant gp160 and gp120 molecules were competent to bind CD4, the mutations impaired fusion function, gp41-gp120 association, and gp160 processing. Furthermore, deletion of residues 550 to 561 or 550 to 561 plus 571 to 582 modified the antigenic properties of the proximal residues 586 to 588 and the distal residues 634 to 664. Our results indicate that residues 550 to 561 are essential for maintaining the gp41 oligomeric structure but that this sequence and additional sequences contribute to the maintenance of gp160 oligomers. Residues 550 to 561 map to the N terminus of a putative amphipathic alpha-helix (residues 550 to 582), whereas residues 571 to 582 map to the C terminus of this sequence.  相似文献   

15.
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion.  相似文献   

16.
HIV-1 entry into its host cell involves a sequential interaction whereby gp41 is in direct contact with the plasma membrane. Understanding the effect of membrane composition on the fusion mechanism can shed light on the unsolved phases of this complex mechanism. Here, we studied N36, a peptide derived from the N-heptad-repeat (NHR) of the gp41 ectodomain, its six helix bundle (SHB) forming counterpart C34, together with the N-terminal 70-mer wild-type peptide (N70), and additional gp41 ectodomain-derived peptides in the presence of two membranes, modeling inner and outer leaflets of the plasma membrane. Information on the structure of these peptides, their affinity towards phospholipids and their ability to induce vesicle fusion was gathered by a variety of fluorescence, spectroscopic and microscopy methods. We found that N36, having strong affinity towards phospholipids, prominently shifts conformation from alpha-helix in an outer leaflet-like zwitterionic membrane to beta-sheet in a membrane mimicking the negatively charged inner leaflet environment, leading to pronounced fusion-activity. Real-time atomic force microscopy (AFM) was used to study the peptides' effect on the membrane morphology, revealing severe bilayer perturbation and extensive pore formation.We also found, that the N36/C34 core is destabilized by electronegative, but not zwitterionic phospholipids. Taken together, our data suggest that the fusion-active pore forming conformation of gp41 is extended, upstream of the SHB. In this manner, folding of the ectodomain into a SHB might also serve as a negative regulator of fusion by impeding gp41 fusion-active surfaces, thus preventing irreversible damage to the cell membrane. This assumption is supported by the finding that pre-incubation of large unilamellar vesicles (LUV) with C-heptad repeat (CHR)-derived fusion inhibitors reduces the fusogenic activity of N-terminal peptides in a dose-dependant manner, and suggests that CHR-derived fusion inhibitors inhibit HIV entry in an analogous mechanism.  相似文献   

17.
The membrane interface-partitioning region preceding the transmembrane anchor of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope protein is one of the sites responsible for virus binding to its host cell membrane and subsequent fusion events. Here, we used molecular modeling techniques to assess membrane interactions, structure, and hydrophobic properties of the fusion-active peptide representing this region, several of its homologs from different HIV-1 strains, as well as a peptide - defective gp41 phenotype - unable to mediate cell-cell fusion and virus entry. It is shown that the wild-type peptides bind to the water-membrane interface in alpha-helical conformation, while the mutant adopts partly destabilized helix-break-helix structure on the membrane surface. The wild-type peptides reveal specific "tilted oblique-oriented" pattern of hydrophobicity on their surfaces - the property specific for fusion regions of other viruses. Fusion peptides penetrate into the membrane with their N-termini and reveal "fine-tuning" interactions with membrane and water environments: the shift of this balance (e.g., due to point mutations) may dramatically change the mode of membrane binding, and therefore, may cause loss of fusion activity. The modeling results agree well with experimental data and provide a strategy to delineate fusogenic regions in amino acid sequences of viral proteins.  相似文献   

18.
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.  相似文献   

19.
We have identified the membranotropic regions of the full sequence of the HIV gp41 envelope glycoprotein by performing an exhaustive study of membrane rupture, phospholipid-mixing and fusion induced by two 15-mer gp41-derived peptide libraries from HIV strains HIV_MN and HIV_consensus_B on model membranes having different phospholipid compositions. The data obtained for the two strains and its comparison have led us to identify different gp41 membranotropic segments in both ecto- and endodomains which might be implicated in viral membrane fusion and/or membrane interaction. The membranotropic segments corresponding to the gp41 ectodomain were the fusion domain, a stretch located on the N-heptad repeat region adjacent to the fusion domain, part of the immunodominant loop, the pre-transmembrane domain and the transmembrane domain. The membranotropic segments corresponding to the gp41 endodomain were mainly located at some specific parts of the previously described lentivirus lytic sequences. Significantly, the C-heptad repeat region and the Kennedy sequence located in the ectodomain and in the endodomain, respectively, presented no membranotropic activity in any model membrane assayed. The identification of these gp41 segments as well as their membranotropic propensity sustain the notion that different segments of gp41 provide the driving force for the merging of the viral and target cell membranes as well as they help us to define those segments as attractive targets for further development of new anti-viral compounds.  相似文献   

20.
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号