首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A carrier-mediated counter transport process is proposed to separate and to purify an amino acid produced by microbial fermentation. The case of L-valine permeation through a liquid membrane, constituted by a solution of Aliquat 336 in decanol and supported by a hydrophobic microporous membrane, is reported. A mathematical model was developed to estimate distribution coefficients and permeabilities and to predict the influence of hydrodynamic and pH conditions on supported liquid membrane (SLM) performances. Optimum conditions for the transport and the concentration of valine were achieved with synthetic aqueous valine solutions. Series of experiments on fermentation broths, where molasses and biomass contents were varied, permitted pointing out the role of the broth composition on the kinetics and yields of separation. The selectivity of transport of valine by an Aliquat 336/decanol liquid membrane was about 10 toward molasses dyes, 100 toward glucose, and beyond 1000 toward sucrose. This allowed us to achieve the recovery and one step of purification of the product in a single operation. The stability of the Aliquat 336/decanol liquid membrane was sufficient to ensure a selective transport of valine during a continuous run lasting 18 days.  相似文献   

2.
Lactic acid has extensive uses in the food, pharmaceutical, cosmetic and chemical industry. Lately, its use in producing biodegradable polymeric materials (polylactate) makes the production of lactic acid from fermentation broths very important. The major part of the production cost accounts for the cost of separation from very dilute reaction media where productivity is low as a result of the inhibitory nature of lactic acid. The current method of extraction/separation is both expensive and unsustainable. Therefore, there is great scope for development of alternative technology that will offer efficiency, economic, and environmental benefits. One of the promising technologies for recovery of lactic acid from fermentation broth is reactive liquid-liquid extraction. In this paper the extraction and recovery of lactic acid based on reactive processes is examined and the performance of a hydrophobic microporous hollow-fiber membrane module (HFMM) is evaluated. First, equilibrium experiments were conducted using organic solutions consisting of Aliquat 336/trioctylamine (as a carrier) and tri-butyl phosphate (TBP)/sunflower oil (as a solvent) The values of the distribution coefficient were obtained as a function of feed pH, composition of the organic phase (ratio of carrier to solvent), and temperature (range 8-40 degrees C). The optimum extraction was obtained with the organic phase consisting of a mixture of 15 wt % tri-octylamine (TOA) and 15% Aliquat 336 and 70% solvent. The organic phase with TBP performed best but is less suitable because of its damaging properties (toxicity and environmental impact) and cost. Sunflower oil, which performed moderately, can be regarded as a better option as it has many desirable characteristics (nontoxic, environment- and operator-friendly) and it costs much less. The percentage extraction was approximately 33% at pH 6 and at room temperature (can be enhanced by operating at higher temperatures) at a feed flow rate of 15-20 L/h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.  相似文献   

3.
In order to extract or remove organic acids from kiwifruit juice, we evaluated their separation and transport rates through supported liquid membranes (SLMs). The liquid membrane consisted of an organic solution composed of a carrier (Aliquat 336/Alamine 336) and a linear alcohol (oleyl alcohol) and was loaded on a microporous polypropylene support (commercial grade Celgard 2500/2400). These SLMs were evaluated (i) in a batch cell to determine the permeability and (ii) in a continuous spiral membrane module to study the effects of various process parameters – flow of feed and strip solutions, membrane composition, recycling mode of operation and kiwifruit juice at natural pH. It was observed that there exists an optimum for each system: pH?2.5–?3.0 for Alamine 336/oleyl alcohol and pH?4.5 for Aliquat 336/oleyl alcohol. At this pH?the flux rates of citric acid and malic acid was greater (6–8 times) than that of quinic acid. The flux rates decreased (greatly for citric acid) with the flow rate of feed and strip solutions and increased (considerably for citric acid) with the SLM composition . The recycling of feed and strip solutions significantly improved the removal efficiency. The SLM system retained its performance over a period of a few days. The SLM process allowed extraction of the above three organic acids (ascorbic acid was removed in trace amounts) from kiwifruit juice at a rate of a few percent (5%) in a single-pass processing.  相似文献   

4.
The occurrence of significant co-extraction of buffer anions by the ion exchanger Aliquat 336 is unavoidable when high levels of system buffering is required. The co-extraction will result in inaccurate equilibrium and mass-transfer characterization of such a system unless its occurrence is taken into account, making process design and control difficult. A study of the equilibrium of phenylalanine extraction using Aliquat 336, a system where high levels of hydroxyl co-extraction occurs, was used as a model case to develop a method of accounting for co-extraction in mass-transfer modeling. Analysis of the equilibrium between bulk-aqueous-phase chloride and phenylalanine concentrations during mass transfer in a stirred-transfer cell showed there to be linear equilibrium relationships between the two parameters for a given extraction system of the form C(Cl,t) = alpha(C(A,t) - C(A,0)) for forward extraction and C(Cl,t) = epsilon C(A,t) + C(Cl,0) for backward extraction. The constants of proportionality of these relationships, or the "co-extraction constants," alpha and epsilon, were shown to be related to the selectivity of Aliquat 336 for the phenylalanine anion by the relationships alpha = -(1/S + 1) and epsilon; = -(1/S(-1) + 1). The linear equilibrium relationships were used to develop two-film theory mass-transfer models for both forward and backward extraction that account for co-extraction. These showed much higher accuracy in modeling stirred-transfer-cell data than the equivalent models which ignored co-extraction.  相似文献   

5.
A quaternary amine, Aliquat 336, inhibits the growth of the green alga Chlorella emersonii, 14C-fixation of the alga is also inhibited. The effect and the site of action of the compound was studied by using isolated spinach chloroplasts. The carbon dioxide dependent oxygen evolution of the chloroplasts is inhibited directly upon the addition of the amine and the oxygen evolution is replaced by an oxygen uptake. By investigating some electron transport reactions in the chloroplasts we were able to show that Aliquat 336 affects the electron transport on the level of photophosphorylation. The results from the in vivo and the in vitro experiments thus show that the quaternary amine affects the photosynthetic process. Aliquat 336 is a solvent extractant used in several industrial processes for extraction of metals from aqueous solutions. Aliquat 336 could be considered a presumptive water pollutant as the compound could enter a recipient water body and thus affect photosynthesis.  相似文献   

6.
The influence of growth parameters on the fermentative production of a nisin-like bacteriocin by Lactococcus lactis subsp. lactis A164 isolated from kimchi was studied. The bacteriocin production was greatly affected by carbon and nitrogen sources. Strain A164 produced at least 4-fold greater bacteriocin in M17 broth supplemented with lactose than other carbon sources. The amount of 3% yeast extract was found to be the optimal organic nitrogen source. While the maximum biomass was obtained at 37 degrees C, the optimal temperature for the bacteriocin production was 30 degrees C. The bacteriocin production was also affected by pH of the culture broth. The optimal pH for growth and bacteriocin production was 6.0. Although the cell growth at pH 6.0 was nearly the same level at pH 5.5 and 6.5, the greater bacteriocin activity was observed at pH 6.0. Exponential growth took place only during an initial period of the cultivation, and then linear growth was observed. Linear growth rates increased from 0.160 g(DCW) x l(-1) x h(-1) to 0.245 g(DCW) x l(-1) x h(-1) with increases in lactose concentrations from 0.5 to 3.0%. Maximum biomass was also increased from 1.88 g(DCW) x l(-1) to 4.29 g(DCW) x l(-1). However, increase in lactose concentration did not prolong the active growth phase. After 20 h cultivation, cell growth stopped regardless of lactose concentration. Production of the bacteriocin showed primary metabolic kinetics. However, bacteriocin yield based on cell mass increased greatly during the late growth phase. A maximum activity of 131x10(3) AU x ml(-1) was obtained at early stationary growth phase (20 h) during the batch fermentation in M17L broth (3.0% lactose) at 30 degrees C and pH 6.0.  相似文献   

7.
The effects of pH strategy on endo- and exo-metabolome profiling of beta-lactamase-producing Bacillus licheniformis were investigated at controlled-pH (pH(C) = 6.5, 6.75, 7.0, 7.25, 7.5) and uncontrolled-pH (pH(UC) = 7.5) values using a glucose-based defined medium. The cell concentration profiles were not affected by the pH considerably within the investigated range. The highest enzyme activities were obtained as A = 54 U cm(-)(3) at pH(C) = 6.75 among the controlled-pH operations and as A = 57 U cm(-3) at the uncontrolled-pH pH(UC) = 7.5. At all conditions, oxygen transfer resistances were more effective, whereas the limitation increased in the beta-lactamase production phase. Total intracellular amino acid concentrations ranged between 0.142 and 6.766 kg m(-3) (0.0058-0.277 g g(cell)(-1)), and their concentrations in terms of kg m(-3) were, at most, 580-fold higher than the extracellular concentrations. Methionine/cysteine concentrations were generally higher than the other intracellular amino acids, whereas asparagine concentration was the highest in the fermentation broth. From Na(+), K(+), and H(+) ion profiles, Na(+)-K(+) antiport and Na(+)-H(+) symport were found to be present within the system, and a correlation was found between organic acid transport and Na(+)-H(+) symport. Intracellular organic acid concentrations in terms of kg m(-3) were, at most, 20-fold higher than that of the extracellular, and with the increase in pH, extracellular acetic acid concentration increased and lactic acid concentration decreased. Average permeability coefficient values of organic acids were found to be in the range from 4.10 x 10(-7) to 4.32 x 10(-6) cm s(-1) for the growth phase (0 < t < 6 h) and decreased at least 3-fold in the beta-lactamase production phase (8 < t < 15 h), indicating the considerable structural change of the lipid membrane during the fermentation.  相似文献   

8.
The potential of boronic acids to improve the bioavailability of carbohydrate derived drugs was investigated through the study of the transport of four sialic acid derivatives through a lipophilic supported liquid membrane at departure phase pH's of 7.4, 8.5 and 10.0. It was found that facilitated transport did occur in most cases, but interestingly, and in contrast to that observed with monosaccharides such as d-fructose, the lipophilic ammonium salt, Aliquat 336, promoted fluxes than those of the boronic acid. The triol side chain of the sialic acid derivatives, combined with the amide at C5, appears to represent a previously unrecognised chloride binding domain which promotes extraction of these compounds into membranes containing Aliquat 336, leading to fluxes greater than those produced by boronic acids.  相似文献   

9.
It has been shown that organic solvents used primarily for the extraction of metals from aqueous leach liquors decrease both the surface tension of the aqueous phase and the chalcopyrite oxidation ability of Thiobacillus ferrooxidans. For the reagents and modifiers investigated, the order of inhibition was found to be LIX 70 < LIX 73 < LIX 71 < LIX 64N < LIX 65N < TBP ~ isodecanol ~ nonylphenol < LIX 63 <<< D2EHPA ~ Kelex 100 < Kelex 120 <<< Alamine 336 ~ Alamine 308 ~ Alamine 310 < Alamine 304 < Adogen 381 ~ Aliquat 336 < Adogen 364. To avoid limitation in bacterial activity, organic matter should be removed from the recycling liquor prior to leaching.  相似文献   

10.
Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logP(ow) (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of > or =2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logP(ow) value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logP(ow) around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logP(ow) of aliphatic alcohols correlates with their toxic effects, as octanol (logP(ow) = 2.9) has more negative effects in P. putida cells than 1-nonanol (logP(ow) = 3.4) or 1-decanol (logP(ow) = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logP(ow) = 3.2) into 3-methylcatechol (logP(ow) = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation.  相似文献   

11.
Two strains of Pseudomonas putida (epI and epII), isolated previously from ethoprophos-treated soil, were able to degrade ethoprophos (10 mg 1(-1)) in a mineral salts medium plus nitrogen (MSMN) in less than 50 h with a concurrent population growth. Addition of glucose or succinate to MSMN did not influence the degrading ability of Ps. putida epI, but increased the lag phase before rapid degradation commenced with Ps. putida epII. The degrading ability of the two isolates was lost when the pesticide provided the sole source of phosphorus. Degradation of ethoprophos was most rapid when bacterial cultures were incubated at 25 and 37 degrees C. Pseudomonas putida epI was capable of completely degrading ethoprophos at a slow rate at 5 degrees C, compared with Ps. putida epII which could not completely degrade ethoprophos at the same time. Pseudomonas putida epI was capable of degrading ethoprophos when only 60 cells ml(-1) were used as initial inoculum. In contrast, Ps. putida epII was able to totally degrade ethoprophos when inoculum densities of 600 cells ml(-1) or higher were used. In general, longer lag phases accompanied the lower inoculum levels. Both isolates rapidly degraded ethoprophos in MSMN at pHs ranging from 5.5 to 7.6, but not at pH 5 or below.  相似文献   

12.
The intensive biosynthesis of nizin on the glucose-yeast medium is observed during the logarithmic and early lag phases of the staphylococcal growth. The ratio of nizin in the fermentation broth (free nazin) and that bound with the cells depended on pH of the medium. When pH was maintained at 6.6-6.8, the amount of nazin in the cells during and growth logarithmic phase was equal to its amount in the fermentation broth filtrate. During the lag phase marked inactivation of nizin was noted. periodical feeding of casein prevented the nizin inactivation. The preliminary data are indicative of the enzymatic nature of the antibiotic.  相似文献   

13.
AIMS: Optimization of the growth of Pediococcus damnosus NCFB 1832 and the production of pediocin PD-1 by traditional fermentation methods. METHODS AND RESULTS: Fermentation studies were conducted in De Man Rogosa and Sharpe (MRS) broth (Oxoid), preadjusted to specific pH values, and in MRS broth supplemented with various nitrogen sources, MnSO4, MgSO4 and Tween 80. The production of pediocin PD-1 closely followed the growth curve of Ped. damnosus NCFB 1832. Maximum levels of bacteriocin activity (3249 AU ml(-1)/O.D.max) were recorded in MRS broth with an initial pH of 6.7. In media with an initial pH of 4.5 bacteriocin activity as low as 222 AU ml(-1)/O.D.max was recorded. The highest bacteriocin activity was recorded in growth conditions allowing the greatest pH variation (highest DeltapH). The addition of bacteriological peptone (1.7%, w/v), MnSO4 (0.014%, w/v) and Tween 80 (3%, v/v) to MRS and adjustment of the medium pH to 6.7 resulted in a further increase in activity (from 3249 to 5078 AU ml(-1)/O.D.max). The same medium, but with an initial pH of 6.2, resulted in an 82.5% decrease in bacteriocin activity. CONCLUSIONS: Pediocin PD-1 production is not only stimulated by the presence of specific growth factors (e.g., bacteriological peptone, MnSO4 or Tween 80), but may also be stimulated by the lowering in pH during growth (highest DeltapH), and thus also the amount of organic acids produced. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of pediocin PD-1 by the wild-type producer strain was significantly improved by using a defined medium and traditional fermentation methods.  相似文献   

14.
The purification of industrial alpha-amylase by liquid-liquid extraction with Aliquat 336 reversed micellar solution as the extractant was studied. Seven kinds of Aliquat 336 reversed micellar solution, formed by using seven kinds of straight chain alkyl alcohols as cosolvent, have been utilized to extract industrial a-amylase. It was found that these seven kinds of reversed micellar solution can all achieve a high protein transfer efficiency in the forward extraction process. After a full forward and backward extraction cycle, however, only the reversed micelles with n-butanol as the cosolvent was found to be able to maintain the activity of alpha-amylase in the stripping solution. By using the reversed micelles of Aliquat 336/isooctane/1% (v/v) n-butanol to perform a full extraction cycle, it was found that 85% of the total activity of alpha-amylase in the industrial a-amylase could be recovered at the end of an extraction cycle and the specific activity of alpha-amylase could be concentrated about 1.5-fold; meanwhile, most of the neutral protease in the industrial a-amylase could be removed. The separation factor of alpha-amylase to neutral protease at the end of an extraction cycle can reach about 10. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
Studies on the batch extraction of lactic acid using an emulsion liquid membrane system are reported. The membrane phase consists of the tertiary amine carrier Alamine 336 and the surfactant Span 80 dissolved in n-heptane/paraffin and aqueous solutions of sodium carbonate in the internal phase. The effects of internal phase reagent, extraction temperature, and initial external phase pH on the extraction efficiency and the emulsion swelling are examined. A statistical factorial experiment on extraction from clarified lactic acid fermentation broth was carried out to obtain knowledge of the performance of the extraction system from a broth. The extraction efficiency from the fermentation broth is found to be lower as compared to aqueous solutions of pure lactic acid. The effect of pH and the presence of other ionic species on selectivity are discussed. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
Biodegradation of chlorophenol mixtures by Pseudomonas putida   总被引:1,自引:0,他引:1  
The dynamic growth behavior of Pseudomonas putida has been studied when resting calls were inoculated into a growth medium containing inhibitory concentrations of mixtures of phenol and monochlorophenols. Resting cells inoculated into single carbon substrate media did not demonstrate enhanced cell lysis by any of the phenol substrates. The apprarent death rate was reduced as the concentrations of phenol or chlorophenols were increased. This behavior was modeled by employing a constant specific death rate (k(d) = 0.0075 h(-1)) and assuming all organic species result in a lag-phase, specific growth rate which may be larger or smaller than k(d).Logarithmic biomass growth on pure monochlorophenols did not occur within 2 weeks after inoculation. Logarithmic growth phases were only observed when the monochlorophenols were cometabolized with phenol. The delay time over which the lag phase exists increased exponentially with phenol concentration and linearly with monochlorophenol concentration. The log growth yield coefficient decreased linearly with monochlorophenol concentration.The lag-phase, specific growth rate was found to decrease exponentially with the concentration of monochlorophenols. This resulted in a 50% lag growth rate inhibition for both 3- and 4-chlorophenol of 9 ppm and for 2-chlorophenol of only 2 ppm. The new, empirical correlations are shown to closely model the complete lag and log growth behavior ot P. putida on phenol and chlorophenol mixtures. (c) 1992 John Wiley & Sons, Inc.  相似文献   

17.
Toxicity of organic extraction reagents to anaerobic bacteria   总被引:1,自引:0,他引:1  
Various forms of liquid-liquid extraction systems are being developed to separate products, such as ethanol and volatile fatty acids (VFA), from fermentation liquids, since distillation is energetically expensive. Continuous extraction is advantageous, as product inhibition of the fermentation is minimized. However, some extraction solvents may be toxic or inhibitory to microorganisms.Thirty organic chemicals were examined by means of a small scale (60 mL) batch fermentation bioassay procedure for their toxicity to a commercial inoculum (Methanobac, W.B.E. Ltd.), which was a mixed culture of facultatively anaerobic, acid-producing bacteria. Gas production, pH change of medium, and the concentrations of ethanol, VFA, and lactic acid were measured after 75 h growth. The optimum experimental conditions for toxicity testing were alfalfa as substrate (2 g), a buffered nutrient medium (pH 6.8), "Methanobac" inoculum (10 mL), and test chemicals at levels between 10 and 100 muL/mL.Thirteen chemicals were nontoxic, and included the paraffins (C(6)-C(12)), phthalates, organophosphorus compounds, Freon 113 (1,1,2-trichloro-1,2,2-trifluoro ethane), Aliquat 336 (tricaprylylmethyl ammonium chloride), di-isoamyl ether, and trioctylamine. Other amine extractants were partially toxic. Alcohols (C(5)-C(12)), ketones (C(5)-C(8)), benzene derivatives, isoamyl acetate, and di-isopropyl ether were toxic. Generally, the chemicals were not toxic unless present at levels in excess of that expected to be required to saturate the aqueous phase.Total gas production was a good indicator of toxicity even within 24 h, but the presence of homofermentative (nongas producing) lactic acid bacteria complicated interpretation."Methanobac" inoculum was compared with an inoculum derived from a rumen culture for four test chemicals. The results were essentially the same. However, the toxicity of a chemical to bacteria is likely to vary considerably between bacterial species.  相似文献   

18.
To study the effect of acetate inhibition on the parameters of yield and maintenance for bacterial growth, Pseudomonas putida ATCC 23467 was grown in a minimal salts medium with acetate as the sole carbon source with limiting and with excess quantities of urea in the feed medium. The behavior of the chemostat cultures under sole acetate limitation results in low residual acetate present in the fermentation broth. These cultures can be described satisfactorily using the equation q(s) = D/Y(g) + m, i.e., the acetate is consumed only for growth and maintenance,. Those cultures in which urea was limiting or where urea was present in large excess contained significant amounts of residual acetate in the broth. For these cultures it was necessary to add a third term for acetate inhibition to the above expression.  相似文献   

19.
The effect of flow rate, temperature, pH, organic solvent and counter ion on peak shape and separation of the cis and trans conformers of lisinopril are investigated by HPLC. It was demonstrated that complete separation of the two isomers can be achieved at low temperature at either neutral or low pH together with appropriate type and concentration of organic solvent, whereas the elution of lisinopril as a single peak is favored by a decrease of flow rate, elevated temperature, choice of organic solvent (type and amount) and the use of an appropriate counter ion concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号