首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨脂肪因子分泌型卷曲相关蛋白(secreted frizzled-related protein 5,SFRP5)对骨形态发生蛋白9(bone morphogenetic protein 9,BMP9)诱导人脐带间充质干细胞(human umbilical cord-derived mesenchymal stem cells,hUC-MSCs)成骨分化的影响。方法:将人脐带间充质干细胞根据不同的处理因素分为4组:对照组、BMP9组、BMP9+SFRP5组和SFRP5组;分别在3天、5天和7天进行碱性磷酸酶(alkaline phosphatase,ALP)活性读数,7天进行ALP染色,21天进行茜素红染色检测钙盐沉积及油红O染色;收集不同组的细胞用于裸鼠皮下注射成骨模型的建立,4周后取出离体骨进行Micro-CT扫描和分析,获取的标本进行HE、Masson染色,Alcian blue染色及油红O染色检测。Western blot检测成骨分化相关蛋白Runx2和OPN的表达。结果:BMP9组的ALP活性读数和染色结果和茜素红染色结果均较对照组增加,而BMP9+SFRP5组则较BMP9组降低;BMP9处理后出现少量脂滴,而BMP9+SFRP5组脂滴明显增加,SFRP5组脂滴最多;裸鼠皮下注射成骨模型的观察结果显示,对照组和SFRP5组没有形成肉眼可见的皮下包块,BMP9组和BMP9+SFRP5组能生成异位骨;4周后观测大体标本以及进行MicroCT检测,发现BMP9+SFRP5组的骨密度值小于BMP9组(P0.05)。HE、Masson染色,Alcian blue染色结果显示,BMP9组的骨分化程度大于BMP9+SFRP5,油红O染色结果示BMP9+SFRP5组有较多的成脂分化;SFRP5能抑制BMP9诱导的Runx2、OPN的蛋白质表达。结论:SFRP5抑制BMP9诱导的人脐带间充质干细胞成骨分化。  相似文献   

2.
SOST基因的表达调控   总被引:2,自引:0,他引:2  
秦龙娟  丁达霞  崔璐璐  黄青阳 《遗传》2013,35(8):939-947
硬化蛋白(Sclerostin, SOST)主要由骨细胞特异性表达, 是骨形成的负性调节因子。甲状旁腺激素和雌激素抑制SOST基因表达, 转录因子Osterix、Runx2和Mef2c促进SOST基因表达, 而转录因子Sirt1负调控SOST表达。此外, SOST基因表达还受DNA甲基化和microRNA等表观遗传学调控。SOST基因突变可引起骨硬缩症和Van Buchem病, 与骨质疏松症相关联。Wnt和BMP是骨代谢调节的两个重要信号途径, SOST可通过结合BMP的Ⅰ型或Ⅱ型受体和Wnt的共受体LRP5/6分别抑制BMP和Wnt信号途径来调控成骨细胞分化和骨形成。抑制SOST为骨质疏松症的治疗提供了新的途径。文章综述了SOST基因的结构、功能、表达调控、与人类疾病的关系、调节骨代谢的机制及其临床应用前景。  相似文献   

3.
4.
5.
The osteoinductive properties of porous titanium fiber mesh, with or without a calcium phosphate coating and loaded with recombinant human bone morphogenic protein-2 (rhBMP-2) or rhBMP-2 and native bovine BMP (S-300) were investigated in a rat ectopic assay model. A total of 112 calcium phosphate-coated and 112 noncoated porous titanium implants, either loaded with rhBMP-2 and S-300 or loaded with rhBMP-2 alone, were subcutaneously placed in 56 Wistar-King rats. The rats were killed 5, 10, 20, and 40 days postoperatively, and the implants were retrieved.Histologic analysis demonstrated that all growth factor and carrier combinations induced ectopic cartilage and bone formation at 5 and 10 days, respectively. At 20 days, bone formation increased and was characterized by trabecular bone and bone marrow-like tissue. At 40 days, more lamellar bone and hemopoietic bone marrow-like tissue were present. At both times, more bone had been formed in calcium phosphate-coated implants than in noncoated samples. Further, in rhBMP-2 and S-300-loaded specimens, bone formation was higher than in rhBMP-2 only-loaded specimens. In rhBMP-2 only-loaded specimens, bone formation was mainly localized inside the mesh material, whereas in specimens loaded with both rhBMP-2 and S-300, the bone was localized inside and surrounding the titanium mesh. The histological findings were confirmed by calcium content and alkaline phosphatase activity measurements. In addition, all specimens showed osteocalcin expression as early as 5 days postoperatively.Our results show that the combination of titanium mesh with BMPs can induce ectopic bone formation and that this bone formation seems to be similar to "enchondral" ossification. In addition, a thin calcium phosphate coating can have a beneficial effect on the bone-inducing properties of a scaffold material. Finally, rhBMP-2 and native BMP act synergistically in ectopic bone induction.  相似文献   

6.
Functions of bone morphogenetic proteins (BMPs) are initiated by signaling through specific type I and type II serine/threonine kinase receptors. In previous studies, we have demonstrated that the type IB BMP receptor (BMPR-IB) plays an essential and specific role in osteoblast commitment and differentiation. To determine the role of BMP receptor signaling in bone formation in vivo, we generated transgenic mice, which express a truncated dominant-negative BMPR-IB targeted to osteoblasts using the type I collagen promoter. The mice are viable and fertile. Tissue-specific expression of the truncated BMPR-IB was demonstrated. Characterization of the phenotype of these transgenic mice showed impairment of postnatal bone formation in 1-mo-old homozygous transgenic mice. Bone mineral density, bone volume, and bone formation rates were severely reduced, but osteoblast and osteoclast numbers were not significantly changed in the transgenic mice. To determine whether osteoblast differentiation is impaired, we used primary osteoblasts isolated from the transgenic mice and showed that BMP signaling is blocked and BMP2-induced mineralized bone matrix formation was inhibited. These studies show the effects of alterations in BMP receptor function targeted to the osteoblast lineage and demonstrate a necessary role of BMP receptor signaling in postnatal bone growth and bone formation in vivo.  相似文献   

7.
Adenovirus-mediated BMP2 expression in human bone marrow stromal cells   总被引:13,自引:0,他引:13  
Recombinant adenoviral vectors have been shown to be potential new tools for a variety of musculoskeletal defects. Much emphasis in the field of orthopedic research has been placed on developing systems for the production of bone. This study aims to determine the necessary conditions for sustained production of high levels of active bone morphogenetic protein 2 (BMP2) using a recombinant adenovirus type 5 (Ad5BMP2) capable of eliciting BMP2 synthesis upon infection and to evaluate the consequences for osteoprogenitor cells. The results indicate that high levels (144 ng/ml) of BMP2 can be produced in non-osteoprogenitor cells (A549 cell line) by this method and the resultant protein appears to be three times more biologically active than the recombinant protein. Surprisingly, similar levels of BMP2 expression could not be achieved after transduction with Ad5BMP2 of either human bone marrow stromal cells or the mouse bone marrow stromal cell line W20-17. However, human bone marrow stromal cells cultured with 1 microM dexamethasone for four days, or further stimulated to become osteoblast-like cells with 50 microg/ml ascorbic acid, produced high levels of BMP2 upon Ad5BMP2 infection as compared to the undifferentiated cells. The increased production of BMP2 in adenovirus transduced cells following exposure to 1 microM dexamethasone was reduced if the cells were not given 50 microg/ml ascorbic acid. When bone marrow stromal cells were allowed to become confluent in culture prior to differentiation, BMP2 production in response to Ad5BMP2 infection was lost entirely. Furthermore, the increase in BMP2 synthesis seen during differentiation was greatly decreased when Ad5BMP2 was administered prior to dexamethasone treatment. In short, the efficiency of adenovirus mediated expression of BMP2 in bone marrow stromal cells appears to be dependent on the differentiation state of these cells.  相似文献   

8.
The bone morphogenetic proteins (BMPs) play important roles in embryogenesis and normal cell growth. The BMP receptors belong to the family of serine/threonine kinase receptors, whose activation has been investigated intensively for the transforming growth factor-beta (TGF-beta) receptor subfamily. However, the interactions between the BMP receptors, the composition of the active receptor complex, and the role of the ligand in its formation have not yet been investigated and were usually assumed to follow the same pattern as the TGF-beta receptors. Here we demonstrate that the oligomerization pattern of the BMP receptors is different and is more flexible and susceptible to modulation by ligand. Using several complementary approaches, we investigated the formation of homomeric and heteromeric complexes between the two known BMP type I receptors (BR-Ia and BR-Ib) and the BMP type II receptor (BR-II). Coimmunoprecipitation studies detected the formation of heteromeric and homomeric complexes among all the BMP receptor types even in the absence of ligand. These complexes were also detected at the cell surface after BMP-2 binding and cross-linking. Using antibody-mediated immunofluorescence copatching of epitope-tagged receptors, we provide evidence in live cells for preexisting heteromeric (BR-II/BR-Ia and BR-II/BR-Ib) and homomeric (BR-II/BR-II, BR-Ia/ BR-Ia, BR-Ib/ BR-Ib, and also BR-Ia/ BR-Ib) oligomers in the absence of ligand. BMP-2 binding significantly increased hetero- and homo-oligomerization (except for the BR-II homo-oligomer, which binds ligand poorly in the absence of BR-I). In contrast to previous observations on TGF-beta receptors, which were found to be fully homodimeric in the absence of ligand, the BMP receptors show a much more flexible oligomerization pattern. This novel feature in the oligomerization mode of the BMP receptors allows higher variety and flexibility in their responses to various ligands as compared with the TGF-beta receptors.  相似文献   

9.
10.
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily that play important roles in bone formation, embryonic patterning, and epidermal-neural cell fate decisions. BMPs signal through pathway specific mediators such as Smads1 and 5, but the upstream regulation of BMP-specific Smads has not been fully characterized. Here we report the identification of SANE (Smad1 Antagonistic Effector), a novel protein with significant sequence similarity to nuclear envelop proteins such as MAN1. SANE binds to Smad1/5 and to BMP type I receptors and regulates BMP signaling. SANE specifically blocks BMP-dependent signaling in Xenopus embryos and in a mammalian model of bone formation but does not inhibit the TGF-beta/Smad2 pathway. Inhibition of BMP signaling by SANE requires interaction between SANE and Smad1, because a SANE mutant that does not bind Smad1 does not inhibit BMP signaling. Furthermore, inhibition appears to be mediated by inhibition of BMP-induced Smad1 phosphorylation, blocking ligand-dependent nuclear translocation of Smad1. These studies define a new mode of regulation for intracellular BMP/Smad1 signaling.  相似文献   

11.
12.
In this study we investigated the expression of bone morphogenetic protein (BMP)-signaling Smads in distraction osteogenesis (DO). Osteotomy of the right tibia was performed in 14 skeletally mature white New Zealand male rabbits. Lengthening was started 1 week later at a rate of 0.5 mm/12 hr and was maintained for 3 weeks. Expression of Smad proteins 1, 4, 5, 6, 7, and 8 and Smad ubiquitin regulatory factors (Smurfs) 1 and 2 was evaluated in the distracted zone using immunohistochemistry. Expression of receptor-regulated Smads (R-Smads) 1, 5, and 8 showed a significant increase during the distraction phase, followed by a gradual decrease during the consolidation phase. Smad 4 showed significant expression during both distraction and the beginning of the consolidation phase. Smad 6 and Smad 7 were highly expressed during the consolidation phase. Staining for both Smurfs 1 and 2 was maximal at the end of the distraction period. Staining for all proteins was most intense in chondrocyte and fibroblast-like cells. Expression pattern of R-Smads correlated with our previously reported expression pattern of BMPs 2, 4, and 7 and their receptors. These results therefore suggest a role for the whole BMP signaling pathway including the Smad proteins in DO.  相似文献   

13.
目的:探讨人骨形态发生蛋白9(bone morphogenetic proteins 9,BMP9)在体内外诱导人脐带间充质干细胞(human umbilical cord-derived mesenchymal stem cells,hUC-MSCs)成骨分化的作用研究。方法:设立Ad-BMP9处理组和Ad-GFP对照组感染hUC-MSCs,两组细胞分别于3天、5天、7天进行ALP活性检测,14天后采用免疫组织化学染色检测骨钙素(Osteocalcin,OCN)、骨桥蛋白(Osteopotin,OPN)的表达情况,21天后茜素红染色检测矿化结节的形成;然后收集不同分组hUC-MSC用于裸鼠皮下注射成骨模型的建立,4周后取出离体骨进行Micro-CT扫描和分析,并进行H&E、Masson Trichrome、Alcain Blue染色。结果:BMP9处理组的ALP活性和矿化结节形成明显高于对照组,免疫组化染色结果显示BMP9诱导组的OCN、OPG的阳性表达明显高于对照组;裸鼠皮下注射成骨模型的观察结果显示,空白对照组没有形成肉眼可见的皮下包块,仅感染Ad-BMP9的hUC-MSCs能生成异位骨,且形成的异位骨骨量明显,骨密度平均值为396.05±0.60;H&E染色结果显示BMP9诱导生成的异位骨中形成部分成熟的骨基质和骨小梁,Masson Trichrome染色结果显示BMP9明显诱导hUC-MSCs的基质矿化作用,Alcain Blue染色结果显示BMP9明显诱导hUC-MSCs的软骨内成骨作用。结论:BMP9成功诱导人脐带间充质干细胞的体内外成骨作用,为临床骨组织工程的细胞疗法提供了明确的可行性。  相似文献   

14.
Emerging evidence indicates that the dysregulation of protein ubiquitination plays a crucial role in aging‐associated diseases. Smad‐dependent canonical BMP signaling pathway is indispensable for osteoblastic bone formation, which could be disrupted by the ubiquitination and subsequent proteasomal degradation of Smad1/5, the key molecules for BMP signaling transduction. However, whether the dysregulation of Smad1/5 ubiquitination and disrupted BMP signaling pathway is responsible for the age‐related bone formation reduction is still underexplored. Pleckstrin homology domain‐containing family O member 1 (PLEKHO1) is a previously identified ubiquitination‐related molecule that could specifically target the linker region between the WW domains of Smurf1 to promote the ubiquitination of Smad1/5. Here, we found an age‐related increase in the expression of PLEKHO1 in bone specimens from either fractured patients or aging rodents, which was associated with the age‐related reduction in Smad‐dependent BMP signaling and bone formation. By genetic approach, we demonstrated that loss of Plekho1 in osteoblasts could promote the Smad‐dependent BMP signaling and alleviated the age‐related bone formation reduction. In addition, osteoblast‐specific Smad1 overexpression had beneficial effect on bone formation during aging, which could be counteracted after overexpressing Plekho1 within osteoblasts. By pharmacological approach, we showed that osteoblast‐targeted Plekho1 siRNA treatment could enhance Smad‐dependent BMP signaling and promote bone formation in aging rodents. Taken together, it suggests that the increased PLEKHO1 could suppress Smad‐dependent BMP signaling to inhibit bone formation during aging, indicating the translational potential of targeting PLEKHO1 in osteoblast as a novel bone anabolic strategy for reversing established osteoporosis during aging.  相似文献   

15.
Large doses of bone morphogenetic protein 2 (BMP2) are used clinically to induce bone formation in challenging bone defects. However, complications after treatment include swelling, ectopic bone formation, and adjacent bone resorption. While BMP2 can be effective, it is important to characterize the mechanism of the deleterious effects to optimize its use. The aim of this study was to determine the effect of BMP2 on apoptosis in osteoblast lineage cells and to determine the role of the BMP inhibitor Noggin in this process. Human mesenchymal stem cells (MSCs), immature osteoblast‐like MG63 cells, and mature normal human osteoblasts (NHOst) were treated with BMP2. A model system of increased endogenous BMP signaling was created by silencing Noggin (shNOG‐MG63). Finally, the BMP pathway regulating apoptosis in NHOst was examined using BMP signaling inhibitors (5Z‐7‐oxozeaenol, dorsomorphin, H‐8). Apoptosis was characterized by caspase‐3, BAX/BCL2, p53, and DNA fragmentation. BMP2 induced apoptosis in a cell‐type dependent manner. While the effect was minor in MSCs, MG63 cells had modest increases and NHOst cells had robust increases apoptosis after BMP2 treatment. Apoptosis was significantly higher in shNOG‐MG63 than MG63 cells. 5Z‐7‐oxozeaenol and dorsomorphin eliminated the BMP2‐induced increase in DNA fragmentation in NHOst, suggesting roles for TAB/TAK1 and Smad signaling. These results indicate that the apoptotic effect of BMP2 is dependent on cell maturation state, inducing apoptosis in committed osteoblasts through Smad and TAB/TAK1 signaling, and is regulated by Noggin. Dose and delivery must be optimized in therapeutic applications of BMP2 to minimize complications. J. Cell. Biochem. 113: 3236–3245, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Highly purified primitive hemopoietic stem cells express BMP receptors but do not synthesize bone morphogenetic proteins (BMPs). However, exogenously added BMPs regulate their proliferation, differentiation, and survival. To further explore the mechanism by which BMPs might be involved in hemopoietic differentiation, we tested whether stromal cells from long-term culture (LTC) of normal human bone marrow produce BMPs, BMP receptors, and SMAD signaling molecules. Stromal cells were immunohistochemically characterized by the presence of lyzozyme, CD 31, factor VIII, CD 68, S100, alkaline phosphatase, and vimentin. Gene expression was analyzed by RT-PCR and the presence of BMP protein was confirmed by immunohistochemistry (IHC). The supportive role of the stromal cell layer in hemopoiesis in vitro was confirmed by a colony assay of clonogenic progenitors. Bone marrow stromal cells express mRNA and protein for BMP-3, -4, and -7 but not for BMP-2, -5, and -6 from the first to the eighth week of culture. Furthermore, stromal cells express the BMP type I receptors, activin-like kinase-3 (ALK-3), ALK-6, and the downstream transducers SMAD-1, -4, and -5. Thus, human bone marrow stromal cells synthesize BMPs, which might exert their effects on hemopoietic stem cells in a paracrine manner through specific BMP receptors.  相似文献   

17.
Although accumulated evidence has shown the bone anabolic effects of bone morphogenetic proteins (BMPs) that were exogenously applied in vitro and in vivo, the roles of endogenous BMPs during bone formation remain to be clarified. This study initially investigated expression patterns of BMPs in the mouse long bone and found that BMP2 and BMP6 were the main subtypes expressed in hypertrophic chondrocytes that induce endochondral bone formation. We then examined the involvement of the combination of these BMPs in bone formation in vivo by generating the compound-deficient mice (Bmp2+/-;Bmp6-/-). Under physiological conditions, these mice exhibited moderate growth retardation compared with the wild-type (WT) littermates during the observation period up to 52 weeks of age. Both the fetal and adult compound-deficient mice showed a reduction in the trabecular bone volume with suppressed bone formation, but normal bone resorption, whereas the single deficient mice (Bmp2+/- or Bmp6-/-) did not. When a fracture was created at the femoral midshaft and the bone healing was analyzed, the endochondral bone formation, but not intramembranous bone formation, was impaired by the compound deficiency. In the cultures of bone marrow cells, however, there was no difference in osteogenic differentiation between WT and compound-deficient cells in the presence or absence of the exogenous BMP2. We thus concluded that endogenous BMP2 and BMP6 cooperatively play pivotal roles in bone formation under both physiological and pathological conditions.  相似文献   

18.
19.
The purpose of this investigation was to study the effect of bone morphogenetic protein (BMP), transforming growth factor beta-induced gene h3 (betaig-h3), and chitosan on early bony consolidation in distraction osteogenesis in a dog model. Sixteen dogs were used for this study. The lateral surface of the mandibular body was exposed in the subperiosteal plane and the vertical osteotomy on the mandibular body was extended downward. An external distraction device was applied to the mandibular body, and the mandibular distraction was started 5 days after the operation at a rate of 2 mm/day up to a 10-mm distraction after 5 days. The experimental group was then divided into a control group, a BMP group, a betaig-h3 group, and a chitosan group, depending on the type of implantation material used in the distracted area. On the same day after completing the distraction, BMP, betaig-h3, or chitosan was implanted into the distracted area. No material was implanted into the distracted area in the control group. After implanting the materials, the distraction device was left in place for 7 weeks to allow for bony consolidation. Four dogs were allocated to each group. Two dogs in each group, a total of eight dogs, were killed 4 weeks after completing the distraction and the other eight dogs were killed after 7 weeks. Serial radiographs were obtained every week after completing the distraction. New bone was generated in the distracted zone in all groups. In the BMP group, the formation of active woven bone was observed throughout the distracted zone, and the new bone appeared to be nearly normal cortical bone 7 weeks after implantation. In the betaig-h3 and chitosan groups, the development of new bone was observed in the distracted zone after 7 weeks; however, the amount was less than that in the BMP group. In the control group, the new bone was observed at the edges of the distracted zone. These findings suggest that BMP seems to be very effective in early bony consolidation in distraction osteogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号