首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Carbon starvation conditions were found to increase the activities of gluconeogenic enzymes such as malic enzyme, cytosolic malate dehydrogenase and isocitrate lyase along with proteases and inhibition in glucose catabolic enzymes such as G6P dehydrogenase and FDP aldolase inNeurospora crassa  相似文献   

2.
Endophytic fungi are plant symbionts that produce a variety of beneficial metabolites for plant growth and protection against herbivory and pathogens. Fourteen fungal samples were isolated from the roots of soybean cultivar Daemangkong and screened on waito-c rice for their plant growth-promoting capacity. Twelve of the fungal isolates promoted plant growth, while two inhibited it. The fungal isolate DK-1-1 induced maximum plant growth in both waito-c rice and soybean. The plant growth promotion capacity of DK-1-1 was higher than the wild type Gibberella fujikuroi. Gibberellin (GA) analysis of culture filtrate of DK-1-1 showed the presence of higher amounts of bioactive GA3, GA4, and GA7 (6.62, 2.1 and 1.26 ng/mL, respectively) along with physiologically inactive GA5, GA15, GA19, and GA24. Phylogenetic analysis of 18S rDNA sequence identified the fungal isolate as a new strain of Cladosporium sphaerospermum. Gibberellin production and plant growth-promoting ability of genus Cladosporium are reported for the first time in the present study. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
The temporal, nonconcerted development of activities of malate synthase (MS), isocitrate lyase (ICL), and catalase (Cat) was explored in more detail in maturing and germinated cotton (Gossypium hirsutum L.) seeds. RNA was extracted at six intervals beginning at 17 days post anthesis (DPA) through 72 hours post imbibition (HPI). In vitro translations revealed that mRNAs for each enzyme were translatable at all intervals. Enzyme activities and immunoselected proteins also were found at all intervals. Similar specific activities throughout maturation indicated that embryo cells were not accumulating inactive protein. The steady-state level of mRNAs encoding each enzyme exhibited different patterns of change during seed maturation, and each peaked at least 24 h before peak enzyme activities in germinated seeds. All three enzymes occur together as early as 17 DPA in a coordinate manner; however, the subsequent, nonconcerted increases in protein, activity, and mRNA for each enzyme indicate that developmental expression in cotton seed embryos is regulated in a noncoordinate fashion by as yet unidentified specific control mechanism(s).Abbreviations ABA abscisic acid - bp base pairs - DPA days post anthesis - HPI hours post imbibition - kb kilobase (pairs) - M r relative molecular weight - S Svedberg unit (10-13s)  相似文献   

4.
The growth and morphology as well as lipogenesis and activity of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle were studied in the fungus Mucor circinelloides var. lusitanicus INMI grown at various concentrations of urea (nitrogen source) added to the medium in different modes. It was shown that the maximum lipid content in the biomass was observed at a low (0.5 g/l) concentration of the nitrogen source, whereas the highest content of γ-linolenic acid in the lipids was detected at high (up to 4.0 g/l) concentrations of the nitrogen source. It was found that, when the feed-batch mode of nitrogen supply was used, the amount of γ-linolenic acid in total fatty acids was higher (up to 35%) than in the case of a single administration of the same amount of nitrogen source to the medium. The differences in the fatty acid composition and the unsaturation degree of the lipids from different subcellular fractions were demonstrated. The mycelium from the culture grown after a single administration of the nitrogen source was deformed to a great extent. The activities of the TCA cycle enzymes, NAD-dependent isocitrate dehydrogenase (IDH), and malate dehydrogenase (MDH) were lower than in the case of the feed-batch mode of urea addition, whereas the activity of isocitrate lyase (ICL), the key enzyme of the glyoxylate cycle, was higher. The coupling of the cell metabolism and the lipid composition of fungal cells and the process of cell differentiation in fungi depending on the conditions of nitrogen supply is discussed.  相似文献   

5.
We report two species of deuteromycete fungi (Penicillium corylophilum and Cladosporium sphaerospermum) concurrently infecting the swim bladder and posterior kidney and causing erratic behavior in two specimens of wild-caught, tank-held red snapper (Lutjanus campechanus). Lesions produced by both species infiltrated the immediately surrounding tissue and produced severe pathological changes; however, the infection apparently was not systemic. Only P. corylophilum grew in the initial culture from the swim bladder and only C. sphaerospermum grew in the initial culture from the kidney. Infection may have occurred upon penetration of a syringe to deflate the swim bladder. There was no horizontal transmission to 13 other specimens of red snapper held in the same tank. This suggests that these fungi are not primary pathogens. Injection of each species into various sites in the Gulf killifish, Fundulus grandis, failed to produce infections within 1 month, suggesting differences in susceptibility among species.  相似文献   

6.
SYNOPSIS. Seven strains of Tetrahymena pyriformis were assayed for log phase activity of the glyoxylate bypass enzymes isocitrate lyase and malate synthase. In strains 6I, 6II, 6III, and W, isocitrate lyase was induced; in HS, neither enzyme was induced by acetate. During growth in glucose- or acetate-containing media, strains 6III and GL had 2 periods of increased glyoxylate bypass and isocitrate dehydrogenase enzyme activities. Enzyme activities reached a maximum at the end of log phase, declined until the middle of stationary phase, and then increased again to a maximum near the end of stationary phase.  相似文献   

7.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   

8.
In the bivalve mollusksCrenomytilus grayanus, Mizuhopecten yessoensis, Mercenaria stimpsoni, andPeronidia venulosa, the activity of hexokinase (HK) and pyruvate kinase (PK), the key enzymes of glycolysis, and of glucose-6-phosphate dehydrogenase (G6PhDH), the main enzyme of the pentose phosphate path, was determined in the presence of heightened cadmium concentrations (500 mg/l). Under the effect of cadmium, the enzyme activity either decreased immediately or underwent an initial increase and decreased later. Such a response is consistent with the general theory of stress and suggests a difference in the adaptive capacities of the mollusks studied.  相似文献   

9.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

10.
Narciclasine (NCS), isolated from mucilage of Narcissus bulb, showed inhibitory effects on growth and plastid development of excised radish cotyledons. NCS (0.1 mumol/L) started to show inhibitory effects on isocitrate lyase and hydroxypyruvate reductase activities after 24 h incubation in light. When NCS concentration was increased to 10 mumol/L, the activities of both enzymes are completely inhibited. From ultrastructural studies, NCS markedly prevented the degradation of protein bodies and lipid bodies, as well as chloroplast formation of excised radish cotyledons. There was only little degradation of protein and lipid bodies, and almost no chloroplast formation in the excised radish cotyledon treated with 1 mumol/L NCS. Therefore, our results provide clear evidence that NCS inhibited the transition of glyoxysomes and peroxisomes, and chloroplast development.  相似文献   

11.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

12.
The interspecies homology of dace supernatant (A2, AB, B2) and mitochondrial (C2) malate dehydrogenase isozymes has been established through cell fractionation and tissue distribution studies. Isolated supernatant malate dehydrogenase (s-MDH) isozymes show significant differences in Michaelis constants for oxaloacetate and in pH optima. Shifts in s-MDH isozyme pH optima with temperature may result in immediate compensation for increase in ectotherm body pH with decrease in temperature, but duplicate s-MDH isozymes are probably maintained through selection for tissue specific regulation of metabolism.This research was supported in part by NSF Grant SM176-83974 and a grant from the Blakeslee Fund.  相似文献   

13.
Two enzymes catalyze the two step reactions in the D-galactonate nonphosphorolytic catabolic pathway ofAspergillus terreus, namely D-galactonate dehydratase and 2-keto-3-deoxy-D-galactonate (KDGal) aldolase. Maximum enzyme activities were obtained at 40° C and pH 8.0 or at 50° C and pH 7.5 for these two enzymes, respectively. Stability of the two enzymes under different conditions was investigated. From a Lineweaver-Burk plot of the reciprocal of initial velocities and substrate concentrations, apparent K m values were calculated for D-galactonate, pyruvate and glyceraldehyde and found to be 8.33, 14.28 and 5.55 mM, respectively, in crude cell-free extracts. Results indicated the requirement of magnesium cation for D-galactonate dehydratase activity at an initial concentration of 10–2 M. The presence of Mg2+ in the reaction mixture seems to induce greatly the fitness of the dehydratase with D-galactonate as no activity could be detected with 24-h dialyzed extract in the absence of magnesium cation.  相似文献   

14.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

15.
In the green alga Chlamydomonas reinhardtii , nitrogen staravation induced a reversible increase (2-fold) in NAD-isocitrate dehydrogenase (NAD-IDH; EC 1.1.1.41) and NADP-isocitrate dehydrogenase (NADP-IDH; EC 1.1.1.42) activities. Both enzymes were not affected by the concentration of CO2, the dark or the nature of the nitrogen source (nitrate, nitrite, or ammonium). When cells growing autotrophically were transferred to heterotrophic conditions, a 40% reduction of the NAD-IDH activity was detected, a 2-fold increase of NADP-IDH was observed and isocitrate lyase (ICL; EC 4.1.3.1) activity was induced. The replacement of autotrophic conditions led to the initial activity levels. NAD- and NADP-IDH activities showed markedly different patterns of increase in synchronous cultures of this alga obtained by 12 h light/12 h dark transitions. While NAD-IDH increased in the last 4 h of the dark period, NADP-IDH increased during the last 4 h of the light period, remaining constant for the rest of the cycle.  相似文献   

16.
Cell-free extracts of crotonate-grown cells of the syntrophic butyrate-oxidizing bacteriumSyntrophospora bryantii contained high hydrogenase activities (8.5–75.8 µmol · min–1 mg–1 protein) and relatively low formate dehydrogenase activities (0.04–0.07 µmol · min–1 mg–1 protein). The K M value and threshold value of the hydrogenase for H2 were 0.21 mM and 18 µM, respectively, whereas the K M value and threshold value of the formate dehydrogenase for formate were 0.22 mM and 10 µM, respectively. Hydrogenase, butyryl-CoA dehydrogenase and 3-OH-butyryl-CoA dehydrogenase were detected in the cytoplasmic fraction. Formate dehydrogenase and CO2 reductase were membrane-bound, likely located at the outer aspect of the cytoplasmic membrane. Results suggest that during syntrophic butyrate oxidation H2 is formed intracellularly while formate is formed at the outside of the cell.  相似文献   

17.
Activities of some enzymes related to carbon metabolism were studied in different ecotypes of Rumex nepalensis growing at 1 300, 2 250, and 3 250 m above mean sea level. Activities of ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase, aspartate aminotransferase, and glutamine synthetase increased with altitude, whereas activities of malate dehydrogenase, NAD-malic enzyme, and citrate synthase did not show a significant difference with change in altitude.  相似文献   

18.
S. Kannaiyan 《Plant and Soil》1988,108(2):299-302
The effect of fungicidesviz. Benomyl, Carbendazim, Chloroneb, Kitazin, Edifenphos, Thiabendazole and Wettable ceresan on the production of enzymes byR. solani was studied. The fungicides tested were inhibitory to the production and activity of amylase, invertase and cellulase. The fungicides inhibited the growth of the fungus to a considerable extent.  相似文献   

19.
We tested the effects of cold stratification, temperature, light and NaCl on seed germination and germination recovery and of NaCl on radicle growth and radicle elongation recovery of Kalidium caspicum, a small leafy succulent shrub dominant in saline deserts in northwest China. In all conditions of temperature and light/darkness, germination percentages and rates of cold-stratified seeds were significantly higher than those of nonstratified seeds. Germination of a high percentage of both nonstratified and stratified seeds was inhibited by 0.2 M NaCl, and 0.6 M NaCl completely inhibited germination. Nongerminated seeds germinated after they were transferred from NaCl solutions to distilled water. Radicle elongation significantly decreased with increase in salinity, and it was completely inhibited by ≥1.0 M NaCl; radicle elongation recovered in young seedlings pretreated by 10 days of incubation in ≤0.4 M NaCl. Results show that seed germination and early seedling growth of K. caspicum are salt tolerant, and these characteristics help explain why this species can survive and dominate salt habitats, such as those in the Junggar desert in Xinjiang, northwest China.  相似文献   

20.
Specific activities of eight enzymes involved in glycerol metabolism were determined in crude extracts of three strains ofNeurospora crassa after growth on six different carbon sources. One of the strains was wild type, which grew poorly on glycerol as sole carbon source; the other two were mutant strains which were efficient glycerol utilizers. A possible basis for this greater effeciency of glycerol utilization was catabolite repression of glyceraldehyde kinase by glycerol in wild type, and two-fold higher glycerate kinase activity in the mutant strains after growth on glycerol, thus apparently allowing two routes for glyceraldehyde to enter the glycolytic pathway in the mutant strains but only one in wild type. The preferential entry of glyceraldehyde to the glycolytic pathway through glycerate was suggested by the lack of glyceraldehyde kinase in all three strains after growth on one or more of the carbon sources and the generally higher levels of aldehyde dehydrogenase and of glycerate kinase than of glyceraldehyde kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号