首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transaminations catalysed by brain glutamate decarboxylase.   总被引:7,自引:0,他引:7       下载免费PDF全文
In addition to normal decarboxylation of glutamate to 4-aminobutyrate, glutamate decarboxylase from pig brain was shown to catalyse decarboxylation-dependent transamination of L-glutamate and direct transamination of 4-aminobutyrate with pyridoxal 5'-phosphate to yield succinic semialdehyde and pyridoxamine 5'-phosphate in a 1:1 stoichiometric ratio. Both reactions result in conversion of holoenzyme into apoenzyme. With glutamate as substrate the rates of transamination differed markedly among the three forms of the enzyme (0.008, 0.012 and 0.029% of the rate of 4-aminobutyrate production by the alpha-, beta- and gamma-forms at pH 7.2) and accounted for the differences among the forms in rates of inactivation by glutamate and 4-aminobutyrate. Rates of transamination were maximal at about pH 8 and varied in parallel with the rate constants for inactivation from pH 6.5 to 8.0. Rates of transamination of glutamate and 4-aminobutyrate were similar, suggesting that the decarboxylation step is not entirely rate-limiting in the normal mechanism. The transamination was reversible, and apoenzyme could be reconstituted to holoenzyme by reverse transamination with succinic semialdehyde and pyridoxamine 5'-phosphate. As a major route of apoenzyme formation, the transamination reaction appears to be physiologically significant and could account for the high proportion of apoenzyme in brain.  相似文献   

2.
M H O'Leary  R M Herreid 《Biochemistry》1978,17(6):1010-1014
Ornithine decarboxylase from Lactobacillus 30a is gradually inactivated by treatment with alpha-methylornithine, but activity is restored by treatment of the inactivated enzyme with pyridoxal phosphate. Inactivation of the enzyme is associated with formation of pyridoxamine phosphate and 5-amino-2-pentanone, alpha-Methylornithine is decarboxylated by the enzyme about 6000 times more slowly than is ornithine under the same conditions. These observations provide an explanation for the previously observed inhibition of ornithine decarboxylase by alpha-methylornithine [M. M. Adbel-Monem, N. E. Newton, and C. E. Weeks (1974), J. Med. Chem. 17, 4447]: alpha-Methylornithine undergoes a decarboxylation-dependent transamination as a result of incorrect protonation of the quinoid intermediate which is formed by decarboxylation of the enzyme-bound pyridoxal phosphate-substrate Schiff base. This protonation produces inactive enzyme. Decarboxylation of ornithine by this enzyme produces a small amount of 4-aminobutanal, presumably also by decarboxylation-dependent transamination.  相似文献   

3.
We have sought to determine whether aromatic L-amino acid decarboxylase which functions as a neurotransmitter biosynthetic enzyme in neuronal cells can be distinguished from an enzyme with similar activity found in peripheral tissues where no neurotransmitters are synthesized. Aromatic L-amino acid decarboxylase was purified to electrophoretic homogeneity from bovine adrenal medulla, and highly specific antibodies were produced. In addition, a DNA clone complementary to aromatic L-amino acid decarboxylase mRNA was isolated by immunological screening of a lambda gt11 cDNA expression library. We have used these antibodies and cDNA probes for biochemical, immunochemical, and molecular analyses. A single form of aromatic L-amino acid decarboxylase is detected in rat and bovine tissue. Specifically, aromatic L-amino acid decarboxylase protein is biochemically and immunochemically indistinguishable in brain, liver, kidney, and adrenal medulla. Hybridization to aromatic L-amino acid decarboxylase cDNA identifies a single mRNA species of 2.3 kilobase pairs in rat tissue. Furthermore, Southern blot analysis reveals that a single gene codes for aromatic L-amino acid decarboxylase.  相似文献   

4.
Histidine decarboxylase of supernatants as well as of purified preparations from rat gastric mucosa is inactivated by a non-specific phosphatase in the absence of pyridoxal 5'-phosphate. The inactivation is a time and concentration-dependent process. Pyridoxal 5'-phosphate, but not histidine, protects the enzyme against phosphatase action. The inactivation is reversible, only pyridoxal 5'-phosphate reactivates the inactivated enzyme. Pyridoxamine 5'-phosphate is ineffective for histidine decarboxylase, but is converted into an active coenzyme only in gastric supernatant. Evidence for the occurrence of an active phosphatase in gastric tissue is also presented; its properties are those of an acid phosphatase and are similar to those of phosphatases hydrolyzing pyridoxal 5'-phosphate in other tissues. The data indicate that phosphatase promotes apoenzyme formation and may play a role in the regulation of histamine synthesis.  相似文献   

5.
3,4-Dihydroxyphenylalanine (Dopa) decarboxylase is a stereospecific pyridoxal 5'-phosphate (PLP)-dependent alpha-decarboxylase that converts L-aromatic amino acids into their corresponding amines. We now report that reaction of the enzyme with D-5-hydroxytryptophan or D-Dopa results in a time-dependent inactivation and conversion of the PLP coenzyme to pyridoxamine 5'-phosphate and PLP-D-amino acid Pictet-Spengler adducts, which have been identified by high performance liquid chromatography. We also show that the reaction specificity of Dopa decarboxylase toward aromatic amines depends on the experimental conditions. Whereas oxidative deamination occurs under aerobic conditions (Bertoldi, M., Moore, P. S., Maras, B., Dominici, P., and Borri Voltattorni, C. (1996) J. Biol. Chem. 271, 23954-23959; Bertoldi, M., Dominici, P., Moore, P. S., Maras, B., and Borri Voltattorni, C. (1998) Biochemistry 37, 6552-6561), half-transamination and Pictet-Spengler reactions take place under anaerobic conditions. Moreover, we examined the reaction specificity of nicked Dopa decarboxylase, obtained by selective tryptic cleavage of the native enzyme between Lys334 and His335. Although this enzymatic species does not exhibit either decarboxylase or oxidative deamination activities, it retains a large percentage of the native transaminase activity toward D-aromatic amino acids and displays a slow transaminase activity toward aromatic amines. These transamination reactions occur concomitantly with the formation of cyclic coenzyme-substrate adducts. Together with additional data, we thus suggest that native Dopa decarboxylase can exist as an equilibrium among "open," "half-open," and "closed" forms.  相似文献   

6.
Glutamate decarboxylase has been purified from potato tubers. The final preparation was homogeneous as judged from native and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Gel filtration on Sephadex G-200 gave a relative molecular mass Mr, of 91 000 for the native enzyme. Sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a subunit Mr of 43 000. Thus the enzyme appears to be a dimer of identical subunits. It has 2 mol pyridoxal 5'-phosphate/mol protein, which could not be removed by exhaustive dialysis or gel filtration on Sephadex G-25. The enzyme has an absorption maximum at 370 nm in sodium phosphate buffer, pH 5.8. Reduction of the enzyme with sodium borohydride abolished the absorption maximum at 370 nm with attendant loss of catalytic activity. The enzyme exhibited pH-dependent spectral changes. The enzyme was specific for L-glutamate and could not decarboxylate other amino acids tested. The enzyme was maximally active at pH 5.8 and a temperature of 37 degrees C. Isoelectric focussing gave a pI of 4.7 Km values for L-glutamate and pyridoxal 5'-phosphate were 5.6 mM and 2 microM respectively. Thiol-directed reagents and heavy metal ions inhibited the enzyme, indicating that an -SH group is required for activity. The nature of the functional groups at the active site of the enzyme was inferred from competitive inhibition studies. L-Glutamate promoted inactivation of the enzyme caused by decarboxylation-dependent transamination was demonstrated. The characteristics of potato enzyme were compared with enzyme from other sources.  相似文献   

7.
Some properties of glutamate decarboxylase (EC 4.1.1.15) activity in brain of newborn and adult mouse were studied comparatively. It was found that glutamate decarboxylase of the newborn brain was strongly inactivated by homogenization in hypotonic medium, centrifugation of isotonic sucrose homogenates, preincubation at 37 degrees C or the addition of Triton-X-100, whereas the adult brain enzyme was practically unaffected by any of these conditions. It was also found that the newborn glutamate decarboxylase was less activated by pyridoxal 5'-phosphate and less inhibited by pyridoxal 5'-phosphate oxime-O-acetic acid, than the adult enzyme. These differences do not exist for brain dihydroxyphenylalanine decarboxylase (EC 4.1.1.26) and are not due to the release of inhibitors from the newborn brain. On the basis of the results obtained it is postulated that two forms of glutamate decarboxylase exist in brain: a newborn form, which is unstable and has high affinity for pyridoxal 5'-phosphate, and an adult form, which is much more stable and has low affinity for pyridoxal 5'-phosphate. The possible implications of these findings in the establishment of the gamma-aminobutyric acid dependent synaptic inhibitory mechanisms during development are discussed.  相似文献   

8.
The question of the existence of a p-tyrosine decarboxylase pathway for the formation of p-tyramine in mammalian tissues remains unresolved. Development of a sensitive and specific assay for p-tyrosine decarboxylase has permitted demonstration of this activity in rat tissues and human kidney. Tyrosine decarboxylase was purified to electrophoretic homogeneity by pH 5.0 precipitation, ammonium sulfate precipitation, gel filtration, phenyl-Sepharose chromatography, DEAE-Sephacel chromatography, and preparative isoelectric focusing. A specific rabbit antiserum to tyrosine decarboxylase was also obtained. Purified tyrosine decarboxylase possessed a narrow pH dependency with an optimum at 8.0. Benzene and certain other organic solvents dramatically stimulated tyrosine decarboxylase activity of purified enzyme. Purified tyrosine decarboxylase activity also decarboxylated L-DOPA, 5-hydroxytryptophan, 3,4-dihydroxyphenylserine, o-tyrosine, m-tyrosine, phenylalanine, histidine, and tryptophan, which suggested that the purified enzyme was aromatic L-amino acid decarboxylase. This conclusion was supported by a constant ratio of 5-hydroxytryptophan decarboxylase to tyrosine decarboxylase throughout the purification scheme and by parallel immunoprecipitation of decarboxylase activities by the specific antityrosine decarboxylase antisera. Thus, we report that p-tyrosine is decarboxylated by aromatic L-amino acid decarboxylase and that this metabolic transformation may be an important source of p-tyramine in mammalian tissues. In conclusion, neuronal tissues that synthesize catecholamines or serotonin should now be considered capable of synthesizing p-tyramine and other biogenic amines.  相似文献   

9.
In histidine biosynthesis, histidinol-phosphate aminotransferase catalyzes the transfer of the amino group from glutamate to imidazole acetol-phosphate producing 2-oxoglutarate and histidinol phosphate. In some organisms such as the hyperthermophile Thermotoga maritima, specific tyrosine and aromatic amino acid transaminases have not been identified to date, suggesting an additional role for histidinol-phosphate aminotransferase in other transamination reactions generating aromatic amino acids. To gain insight into the specific function of this transaminase, we have determined its crystal structure in the absence of any ligand except phosphate, in the presence of covalently bound pyridoxal 5'-phosphate, of the coenzyme histidinol phosphate adduct, and of pyridoxamine 5'-phosphate. The enzyme accepts histidinol phosphate, tyrosine, tryptophan, and phenylalanine, but not histidine, as substrates. The structures provide a model of how these different substrates could be accommodated by histidinol-phosphate aminotransferase. Some of the structural features of the enzyme are more preserved between the T. maritima enzyme and a related threonine-phosphate decarboxylase from S. typhimurium than with histidinol-phosphate aminotransferases from different organisms.  相似文献   

10.
Rapid Inactivation of Brain Glutamate Decarboxylase by Aspartate   总被引:2,自引:2,他引:0  
In the absence of its cofactor, pyridoxal 5'-phosphate (pyridoxal-P), glutamate decarboxylase is rapidly inactivated by aspartate. Inactivation is a first-order process and the apparent rate constant is a simple saturation function of the concentration of aspartate. For the beta-form of the enzyme, the concentration of aspartate giving the half-maximal rate of inactivation is 6.1 +/- 1.3 mM and the maximal apparent rate constant is 1.02 +/- 0.09 min-1, which corresponds to a half-time of inactivation of 41 s. The rate of inactivation by aspartate is about 25 times faster than inactivation by glutamate or gamma-aminobutyric acid (GABA). Inactivation is accompanied by a rapid conversion of holoenzyme to apoenzyme and is opposed by pyridoxal-P, suggesting that inactivation results from an alternative transamination of aspartate catalyzed by the enzyme, as previously observed with glutamate and GABA. Consistent with this mechanism pyridoxamine 5'-phosphate, an expected transamination product, was formed when the enzyme was incubated with aspartate and pyridoxal-P. The rate of transamination relative to the rate of decarboxylation was much greater for aspartate than for glutamate. Apoenzyme formed by transamination of aspartate was reactivated with pyridoxal-P. In view of the high rate of inactivation, aspartate may affect the level of apoenzyme in brain.  相似文献   

11.
Aminodeoxychorismate lyase is a pyridoxal 5'-phosphate-dependent enzyme that converts 4-aminodeoxychorismate to pyruvate and p-aminobenzoate, a precursor of folic acid in bacteria. The enzyme exhibits significant sequence similarity to two aminotransferases, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase. In the present study, we have found that aminodeoxychorismate lyase catalyzes the transamination between D-alanine and pyridoxal phosphate to produce pyruvate and pyridoxamine phosphate. L-Alanine and other D- and L-amino acids tested were inert as substrates of transamination. The pro-R hydrogen of C4' of pyridoxamine phosphate was stereospecifically abstracted during the reverse half transamination from pyridoxamine phosphate to pyruvate. Aminodeoxychorismate lyase is identical to D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase in the stereospecificity of the hydrogen abstraction, and differs from all other pyridoxal enzymes that catalyze pro-S hydrogen transfer. Aminodeoxychorismate lyase is the first example of a lyase that catalyzes pro-R-specific hydrogen abstraction. The result is consistent with recent X-ray crystallographic findings showing that the topological relationships between the cofactor and the catalytic residue for hydrogen abstraction are conserved among aminodeoxychorismate lyase, D-amino acid aminotransferase and branched-chain L-amino acid aminotransferase [Nakai, T., Mizutani, H., Miyahara, I., Hirotsu, K., Takeda, S., Jhee, K.-H., Yoshimura, T., and Esaki, N. (2000) J. Biochem. 128, 29-38].  相似文献   

12.
Aromatic L-amino acid decarboxylase was purified from bovine brain for the first time by affinity chromatography using a monoclonal antibody to the enzyme, and it was compared with the decarboxylase purified from bovine adrenal medulla by the same procedure. The monoclonal antibody was produced from a hybridoma established for the enzyme highly purified from bovine adrenal medulla. The Mr values of brain and adrenal-medulla enzyme were both estimated to be approx. 100,000 by gel-permeation chromatography. SDS/polyacrylamide-gel electrophoresis revealed a single band with an apparent Mr of 50,000. Western immunoblot analysis showed that the antibody recognized each enzyme. With regard to substrate specificity, pH-dependence and effect of pyridoxal 5'-phosphate as a cofactor, both enzymes were similar.  相似文献   

13.
The relationship between the susceptibility to convulsions, the content of pyridoxal 5'-phosphate and the activity of pyridoxal kinase (EC 2.7.1.35) and glutamate decarboxylase (EC 4.1.1.15) in brain, was studied in the developing mouse. Seizures were induced by pyridoxal phosphate-gamma-glutamyl hydrazone (PLPGH), a drug previously reported to reduce the levels of pyridoxal 5'-phosphate and as a consequence to inhibit the activity of glutamate decarboxylase in brain of adult mice. It was found that the seizure pattern, as well as the time of appearance of convulsions, differed between 2- and 5-day old mice and 10-day old or older mice, indicating a progressive increase in seizure susceptibility during development. In brain, pyridoxal kinase activity and pyridoxal 5'-phosphate levels were decreased by the administration of PLPGH at all ages studied, whereas glutamate decarboxylase activity was inhibited less than 25% in 2- and 5-day old mice, and about 50% thereafter. Parallelly, the activation of glutamate decarboxylase by pyridoxal 5'-phosphate added in vitro to control homogenates was less in 2- and 5-day old mice than in older animals. It is concluded that the increase in the susceptibility to seizures induced by PLPGH during development is probably related to the increase observed in the sensitivity of glutamate decarboxylase in vivo to a decrease of pyridoxal 5'-phosphate levels. The correlation between pyridoxal 5'-phosphate, glutamate decarboxylase, and seizure susceptibility seems to be established at about 10 days of age.  相似文献   

14.
Thermodynamic and kinetic parameters for Schiff base formation of pyridoxal 5'-phosphate and pyridoxal with epsilon-aminocaproic acid as well as of pyridoxal 5'-phosphate with L-serine were obtained in 0.1 M sodium pyrophosphate buffer as a function of temperature. Changes in enthalpy, which were determined by direct microcalorimetry, were small at 25 degrees C, but varied strongly with pH for the reaction of pyridoxal 5'-phosphate with the amino acids. In contrast to the fast Schiff base formation of pyridoxal 5'-phosphate, a very slow reaction was found for pyridoxal and epsilon-aminocaproic acid concomitant with a larger change in enthalpy. By preventing hemiacetal formation the phosphate moiety plays a crucial role.  相似文献   

15.
Abstract: Aromatic L-amino acid decarboxylase (AAAD) activity of mouse striatum and midbrain increased after an intracerebro-ventricular injection of either forskolin or 8-bromo-cyclic AMP. The increase was transient, peaking between 15 and 30 min and returning to baseline by ˜90 min. The increase of AAAD activity after forskolin was not affected by pretreatment with cycloheximide. Kinetic studies indicated an apparent increase of V max with little change of the K m for L-DOPA or pyridoxal 5'-phosphate. We conclude that AAAD activity of striatum and midbrain can be modulated by a cyclic AMP-dependent process.  相似文献   

16.
P A Der Garabedian 《Biochemistry》1986,25(19):5507-5512
A new enzyme that catalyzes the transamination of delta-aminovalerate with alpha-ketoglutarate was purified to homogeneity from adapted cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 118,000. The transaminase behaved as a dimer with two similar subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a maximum activity in the pH range of 7.8-8.5 and at 40 degrees C. alpha-Ketoglutarate and to a lesser extent pyridoxal 5'-phosphate were effective protecting agents toward temperature raising. The enzyme exhibits absorption maximum at 330 and 410 nm. The enzyme catalyzes the transamination between omega-amino acids and alpha-ketoglutarate. delta-Aminovaleric acid is the best amino donor. The Km values for delta-aminovalerate, alpha-ketoglutarate, and pyridoxal 5'-phosphate determined from the Lineweaver-Burk plot were 4.9 mM, 3.6 mM, and 22.7 microM, respectively. The inhibitory effect of various amino acids analogues on the transamination reaction between delta-aminovalerate and alpha-ketoglutarate was studied, and Ki values were determined.  相似文献   

17.
18.
The reaction of L-aromatic aminoacid decarboxylase (EC 4.1.1.28) with α-methyl-L-DOPA or 5-hydroxy-L-tryptophan leads to the formation of dihydroxyphenylacetone or, respectively, 5-hydroxyindolacetaldeyde. These are produced in amounts far exceeding, on molar basis, that of the coenzyme, pyridoxal-5′-phosphate. The reaction cannot therefore be simply a decarboxylation-dependent transamination, using the coenzyme as an amino group acceptor. Evidence is presented which rules out the possibility that this phenomenon is due to an oxidative deamination.  相似文献   

19.
Regulatory properties of brain glutamate decarboxylase   总被引:13,自引:0,他引:13  
1. Glutamate decarboxylase is a focal point for controlling gamma-aminobutyric acid (GABA) synthesis in brain. Several factors that appear to be important in the regulation of GABA synthesis have been identified by relating studies of purified glutamate decarboxylase to conditions in vivo. 2. The interaction of glutamate decarboxylase with its cofactor, pyridoxal 5'-phosphate, is a regulated process and appears to be one of the major means of controlling enzyme activity. The enzyme is present in brain predominantly as apoenzyme (inactive enzyme without bound cofactor). Studies with purified enzyme indicate that the relative amounts of apo- and holoenzyme are determined by the balance in a cycle that continuously interconverts the two. 3. The cycle that interconverts apo- and holoenzyme is part of the normal catalytic mechanism of the enzyme and is strongly affected by several probable regulatory compounds including pyridoxal 5'-phosphate, ATP, inorganic phosphate, and the amino acids glutamate, GABA, and aspartate. ATP and the amino acids promote apoenzyme formation and pyridoxal 5'-phosphate and inorganic phosphate promote holoenzyme formation. 4. Numerous studies indicate that brain contains multiple molecular forms of glutamate decarboxylase. Multiple forms that differ markedly in kinetic properties including their interactions with the cofactor have been isolated and characterized. The kinetic differences among the forms suggest that they play a significant role in the regulation of GABA synthesis.  相似文献   

20.
L-Kynurenine aminotransferase [L-kynurenine:2-oxoglutarate aminotransferase (cyclizing), EC 2.6.1.7] has been purified to homogeneity and crystallized from cell-free extracts of a yeast, Hansenula schneggii, grown in a medium containing L-tryptophan as an inducer. The enzyme has a molecular weight of about 100,000 and consists of two subunits identical in molecular weight (52,000). The enzyme exhibits absorption maxima at 280, 335, and 430 nm, and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. The enzyme-bound pyridoxal 5'-phosphate shows negative circular dichroic extrema, in contrast with other pyridoxal 5'-phosphate acting on L-amino acids. In addition to L-kynurenine and alpha-ketoglutarate, which are the most preferred substrates, a large number of L-amino acids and alpha-keto acids can serve as substrates; the extremely broad substrate specificity is the most characteristic feature of this yeast enzyme. The enzyme activity is significantly affected by both carbonyl and sulfhydryl reagents. Certain dicarboxylic acids such as adipate and pimelate act as competitive inhibitors. Addition of various substrate amino acids to the culture medium results in the inductive formation of aminotransferases which are immunochemically indistinguishable from L-kynurenine aminotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号