首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo specimen, while the normal dry objective lens in room temperature can be used via the optical windows. The ‘touch-free’ specimen transfer via cryo-EM holder allows least specimen deformation and thus maximizes the correlation accuracy between cryo-FM and cryo-EM. Besides, we developed a software to perform semi-automatic cryo-EM acquisition of the target region localized by cryo-FM. Our work provides a new solution for cryo-CLEM and can be adapted for different commercial fluorescence microscope and electron microscope.  相似文献   

2.
Gammaherpesviruses, including the human pathogens Epstein–Barr virus and Kaposi’s sarcoma-associated herpesvirus, are causative agents of lymphomas and other malignancies. The structural characterization of these viruses has been limited due to difficulties in obtaining adequate amount of virion particles. Here we report the first three-dimensional structural characterization of a whole gammaherpesvirus virion by an emerging integrated approach of cryo-electron tomography combined with single-particle cryo-electron microscopy, using murine gammaherpesvirus-68 (MHV-68) as a model system. We found that the MHV-68 virion consists of distinctive envelope and tegument compartments, and a highly conserved nucleocapsid. Two layers of tegument are identified: an inner tegument layer tethered to the underlying capsid and an outer, flexible tegument layer conforming to the overlying, pleomorphic envelope, consistent with the sequential viral tegumentation process inside host cells. Surprisingly, comparison of the MHV-68 virion and capsid reconstructions shows that the interactions between the capsid and inner tegument proteins are completely different from those observed in alpha and betaherpesviruses. These observations support the notion that the inner layer tegument across different subfamilies of herpesviruses has evolved significantly to confer specific characteristics related to viral–host interactions, in contrast to a highly conserved capsid for genome encapsidation and protection.  相似文献   

3.
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

4.
Locating areas of interest by electron microscopy can be laborious. This is particularly true for electron tomography, where the use of thicker sections may obscure relevant details in the projection images. We evaluated the applicability of fluorescent probes to thin plastic sections, in combination with fluorescence microscopy, as an aid in selecting areas for subsequent electron microscopic analysis. We show that pre-embedding labeling of DNA and RNA with acridine orange yielded a predominant nuclear stain. The stain greatly reduced the time needed to scan sections for mitotic cells, or cells with characteristic nuclei such as neutrophils. Post-embedding labeling with SYTOX green yielded a nuclear stain comparable to acridine orange, and wheat germ agglutinin (WGA) conjugated to Alexa Fluor 488 labeled mucous granules and the Golgi area in intestinal goblet cells. The fluorescent labels were visualized directly on sections on electron microscope grids. It was therefore possible to establish a coordinate system based on the position of the grid bars, allowing for easy retrieval of selected areas. Because the fluorescent probes were incompatible with osmium tetroxide treatment, contrast in the sections was faint. We propose a simplified electron tomography procedure for the generation of 2D views with enhanced contrast and resolution.  相似文献   

5.
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.  相似文献   

6.
The fine structure of intact, close-to-spherical mitochondria from the alga Polytomella was visualized by dual-axis cryo-electron tomography. The supramolecular organization of dimeric ATP synthase in the cristae membranes was investigated by averaging subvolumes of tomograms and 3D details at ∼ 6 nm resolution were revealed. Oligomeric ATP synthase is composed of rows of dimers at 12 nm intervals; the dimers make a slight angle along the row. In addition, the main features of monomeric ATP synthase, such as the conically shaped F1 headpiece, central stalk and stator were revealed. This demonstrates the capability of dual-axis electron tomography to unravel details of proteins and their interactions in complete organelles.  相似文献   

7.
We report methodological advances that extend the current capabilities of ion-abrasion scanning electron microscopy (IA-SEM), also known as focused ion beam scanning electron microscopy, a newly emerging technology for high resolution imaging of large biological specimens in 3D. We establish protocols that enable the routine generation of 3D image stacks of entire plastic-embedded mammalian cells by IA-SEM at resolutions of ∼10–20 nm at high contrast and with minimal artifacts from the focused ion beam. We build on these advances by describing a detailed approach for carrying out correlative live confocal microscopy and IA-SEM on the same cells. Finally, we demonstrate that by combining correlative imaging with newly developed tools for automated image processing, small 100 nm-sized entities such as HIV-1 or gold beads can be localized in SEM image stacks of whole mammalian cells. We anticipate that these methods will add to the arsenal of tools available for investigating mechanisms underlying host-pathogen interactions, and more generally, the 3D subcellular architecture of mammalian cells and tissues.  相似文献   

8.
Electron tomography of vitreous sections from cultured mammalian cells   总被引:2,自引:0,他引:2  
Cryo-electron tomography of appropriately thin, frozen-hydrated biological specimens has excellent potential for investigating the 3D macromolecular architecture of eukaryotic cells and tissues. Since cardiomyocytes are too thick to be visualised in an intact state, we grew immortalised cell line HL-1 to sub-confluency and harvested the cells by enzymatic detachment prior to hyperbaric freezing, ultramicrotomy, and tomography. We improved the efficiency of tomographic acquisition from vitreous cryosections by implementing two new features: (1) fluorescence microscopy at cryogenic temperatures to search for features of interest without expending any of the tolerable electron dose on secondary (non-imaging) tasks, and (2) the use of colloidal gold as fiducial markers. Vital fluorescent staining and subsequent cryo-fluorescence microscopy of vitreous sections were used to localise mitochondria lying in positions suitable for acquiring tilt series, taking into account section flatness, presence of contamination and proximity to grid bars. To provide a simple and robust means of aligning tomograms, we developed a universally applicable protocol for depositing colloidal gold onto vitreous sections, analogous to the method for applying quantum dots described by Masich et al. [Masich, S., Östberg, T., Norlén, L., Shupliakov, O., Daneholt, B., 2006. A procedure to deposit fiducial markers on vitreous cryo-sections for cellular tomography. J. Struct. Biol. 156, 461–468]. Tomograms of thin sections (nominal thickness 65–85 nm) of cardiac mitochondria revealed the interconnectivity of cristae and junctions with the inner mitochondrial membrane. In some cases, ATP synthases could be identified without ambiguity. These findings confirm the feasibility of investigating the structural biology of mammalian cells in three dimensions and at a resolution of 6–8 nm.  相似文献   

9.
To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as ‘correlative microscopy’. Correlative imaging allows researchers to gain additional novel structure–function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or ‘combined’) microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.  相似文献   

10.
Bovine V-ATPase from brain clathrin-coated vesicles was investigated by cryo-electron microscopy and single particle analysis. Our studies revealed great flexibility of the central linker region connecting V1 and V0. As a consequence, the two sub-complexes were processed separately and the resulting volumes were merged computationally. We present the first three-dimensional (3D) map of a V-ATPase obtained from cryo-electron micrographs. The overall resolution was estimated 34 Å by Fourier shell correlation (0.5 cutoff). Our 3D reconstruction shows a large peripheral stalk and a smaller, isolated peripheral density, suggesting a second, less well-resolved peripheral connection. The 3D map reveals new features of the large peripheral stator and of the collar-like density attached to the membrane domain. Our analyses of the membrane domain indicate the presence of six proteolipid subunits. In addition, we could localize the V0 subunit a flanking the large peripheral stalk.  相似文献   

11.
Image shift due to beam-induced specimen charging has become the most severe problem in electron microscopy for imaging two-dimensional (2D) crystals of biological macromolecules, especially in the case of highly tilted specimens. Image shift causes diffraction spots perpendicular to the tilt axis to disappear even at medium or low resolution. The yield of good images from tilted specimens prepared on a single layer of continuous carbon support film is therefore very low. In this paper, we have used 2D crystals of aquaporin-4 to investigate the effect of a carbon sandwich preparation method on specimen charging. We find that a larger number of images show sharp diffraction spots perpendicular to the tilt axis if crystals are placed in between two sheets of carbon film as compared to images taken from specimens prepared by the conventional single carbon support film technique. Our results demonstrate that the reproducible carbon sandwich preparation technique overcomes the severe specimen charging problem and thus has the potential to significantly speed up structure analysis by electron crystallography.  相似文献   

12.
Protein coats, important for vesicular trafficking in eukaryotic cells, help shape membranes and package cargo. But their dynamic construction cannot be fully understood until the distinct steps of their assembly in their native intracellular context at molecular resolution can be visualized. For this, correlative light and electron microscopy (CLEM) is an essential tool. Here, we discuss how emerging CLEM techniques have been used to study the assembly of protein coats inside cells. We review how current and developing CLEM technologies are poised to answer fundamental questions of protein coat architecture at the nanoscale.  相似文献   

13.
Leukotriene B4 (LTB4), a potent chemotactic and immune-modulating mediator, signals via two receptors, BLT1 and BLT2. Recently, we reported that BLT1 is the predominating BLT expressed on human umbilical vein endothelial cells (HUVEC), and that BLT1 mediated functions are enhanced by LTB4 and lipopolysaccharide (LPS), but not by TNFα. Here, we demonstrate that BLT1 is found on the outer cell membrane of HUVECs but also in intracellular granules, co-localized with monocyte chemotactic protein-1 and P-selectin, but not with interleukin-8 and von Willebrand factor. Upon stimulation with LTB4 or LPS, more BLT1 protein is found, now evenly distributed over the cytoplasm and in the cell nucleus, but less on the cell surface. An MAP kinase inhibitor prevented this enhancement and translocation, suggesting this signaling pathway to be crucial. Thus, BLT1, a G-protein-coupled 7-transmembrane receptor, is located in various subcellular compartments in endothelial cells, which may have implications for cellular LT dependent responses and target accessibility for BLT1 antagonists.  相似文献   

14.
In tissue engineering, the continuous monitoring of cell and tissue cultures in vitro is crucial to assess their functional status over time. However, these constructs can be large, thick and non-transparent. Medical imaging techniques can allow real-time in situ monitoring of cell and tissue cultures in thick solid scaffolds. Here, human endothelial cells were embedded in fibrin gels that were continuously perfused by a culture medium. Positron emission tomography (PET) imaging was used to assess cell viability non-destructively over periods extending up to a few weeks. PET imaging protocols were adapted and validated to measure culture perfusion and cell metabolism using [18F]-fluorodeoxyglucose (18FDG). Cell densities down to 100,000 cells/mL were detectable after 12 h of culture and cell structures were localized within the fibrin gels after 1–2 weeks of culture. PET is a promising tool to investigate a wide range of cellular properties and reveal information on tissue development.  相似文献   

15.
A long-standing challenge in cell biology is elucidating the structure and spatial distribution of individual membrane-bound proteins, protein complexes and their interactions in their native environment. Here, we describe a workflow that combines on-grid immunogold labeling, followed by cryo-electron tomography (cryoET) imaging and structural analyses to identify and characterize the structure of photosystem II (PSII) complexes. Using an antibody specific to a core subunit of PSII, the D1 protein (uniquely found in the water splitting complex in all oxygenic photoautotrophs), we identified PSII complexes in biophysically active thylakoid membranes isolated from a model marine diatom Phaeodactylum tricornutum. Subsequent cryoET analyses of these protein complexes resolved two PSII structures: supercomplexes and dimeric cores. Our integrative approach establishes the structural signature of multimeric membrane protein complexes in their native environment and provides a pathway to elucidate their high-resolution structures.  相似文献   

16.
Mass transfer between flowing blood and arterial mural cells (including vascular endothelial cells) may play an important role in atherogenesis. Endothelial cells are known to have an apical surface topography that is not flat, and hence mass transfer patterns to individual endothelial cells are likely affected by the local cellular topography. The purpose of this paper is to investigate the relationship between vascular endothelial cell surface topography and cellular level mass transfer. Confluent porcine endothelial monolayers were cultured under both shear and static conditions and atomic force microscopy was used to measure endothelial cell topography. Using finite element methods and the measured cell topography, flow and concentration fields were calculated for a typical, small, blood-borne solute. A relative Sherwood number was defined as the difference between the computed Sherwood number and that predicted by the Leveque solution for mass transfer over a flat surface: this eliminates the effects of axial location on mass transfer efficiency. The average intracellular relative Sherwood number range was found to be dependent on cell height and not dependent on cell elongation due to shear stress in culture. The mass flux to individual cells reached a maximum at the highest point on the endothelial cell surface, typically corresponding to the nucleus of the cell. Therefore, for small receptor-mediated solutes, increased solute uptake efficiency can be achieved by concentrating receptors near the nucleus. The main conclusion of the work is that although the rate of mass transfer varies greatly over an individual cell, the average mass transfer rate to a cell is close to that predicted for a flat cell. In comparison to other hemodynamic factors, the topography of endothelial cells therefore seems to have little effect on mass transfer rates and is likely physiologically insignificant.  相似文献   

17.
The cellular localization of endothelin (ET), a novel vasoconstrictor peptide, was studied in human vascular tissues by immunohistochemistry. Distinct and diffuse staining for ET-like immunoreactivity was demonstrated in the cytoplasm of vascular endothelial cells, but not in smooth muscle cells or adventitial fibroblasts. The specificity was confirmed by the negative results following immunoabsorption. These findings suggest that human vascular endothelial cells function as an endocrine and/or paracrine cells for ET secretion.  相似文献   

18.
We reported previously that the human factor B precursor is a 215-amino acid polypeptide, the first 40 amino acid residues of which function as a mitochondrial targeting presequence [G.I. Belogrudov, Y. Hatefi, J. Biol. Chem. 277 (2002) 6097-6103]. Confocal microscopy of live HEK293 cells, transiently transfected with factor B constructs tagged at the C-terminus with green fluorescent protein (GFP) revealed that either a 40- or 25-residue presequence localized factor B to mitochondria. Indirect immunofluorescent labeling of fixed, permeabilized HEK293 cells that were transiently transfected with a construct lacking a presequence, showed diffuse, intracellular staining that was consistent with targeting of ectopically expressed factor B to cellular compartments distinct from the mitochondria. Mutants in which either Met(-25) or both Met(-25)/Met(-24) residues of the presequence were deleted exhibited decreased or undetectable levels, respectively, of the GFP-tagged factor B. The factor B presequence alone was shown to target a reporter polypeptide GFP to mitochondria. Our studies, therefore, demonstrate that a 24-residue presequence is sufficient to localize factor B to mitochondria, and suggest that the human factor B precursor is a 199-amino acid polypeptide.  相似文献   

19.
Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133(+) precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133(+) cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133(+) cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133(+) cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.  相似文献   

20.
The replacement of endothelium by endothelial progenitor cells (EPCs) for therapeutic use in order to ameliorate the vascular status of ischemic organs is now in the focus of vascular research. The aim of our studies was to investigate whether EPCs derived from peripheral blood mononuclear cells (PBMNCs-derived EPCs) or EPCs propagated from CD34+ hematopoietic stem cells (HSCs-derived EPCs), both isolated from human cord blood, are able to differentiate into early mature endothelial cells (ECs) under certain in vitro conditions. We characterized both cell populations by flow cytometry, phase contrast microscopy, fluorescence microscopy and confocal laser scanning microscopy as well as ultrastructurally using transmission and scanning electron microscopy. While PBMNCs gave rise to clusters of spindle-like EPCs after few days but did not further mature under in vitro conditions, mature ECs could only be successfully propagated from a starting population of isolated HSCs. Both, PBMNCs- and HSCs-derived EPCs, took up Dil-labeled acetylated low density lipoprotein (Dil-Ac-LDL) and could be positively stained for CD31, CD105, the vascular endothelial growth factor receptor 2 (VEGFR-2, KDR) and ulex europaeus agglutinin 1 (UEA-1) at the cell surface. EPC showed surface expression of CD54 and CD106. However, only a small portion of HSCs-derived EPCs was positive for CD54 but negative for CD106. Intracellular staining for von Willebrand factor (vWF) provided a homogenous stain in PBMNC-derived EPCs while in HSCs-derived EPCs, during cultivation for 2–3 weeks, more and more a typical punctuated staining pattern related to Weibel-Palade bodies (WPBs) was visible. By phase contrast and scanning electron microscopy, an arrangement of PBMNCs-derived EPCs in cord-like structures could be demonstrated. In these formations, cells showed parallel alignment but exhibited only few cell contacts. Well-developed WPBs could never be found in PBMNCs-derived EPCs. In contrast, differentiating HSCs-derived EPCs developed adherence junctions, interdigitating junctions as well as syndesmos. During maturation, spindle-like cell types appeared with abundant WPBs as well as cobblestone-like cell types with a fewer content of these organelles. WPBs, in the spindle-like cell types displayed conspicuous shapes and were concentrated in close proximity to mitochondria-rich areas. HSCs-derived EPCs exhibited signs of high synthetic activity such as a well-developed rough endoplasmic reticulum (RER) and multiple Golgi complexes. In the trans-Golgi network (TGN), close to the Golgi complex, a new formation of WPBs could be observed. These morphological features correlated well with a high growing capacity. Although it was not possible to demonstrate the complete differentiation line from HSCs to early matured ECs by immunologic markers because of the limited number of cells available for such investigations, distinct morphologic maturation stages could be shown at light and electron microscopical levels. In conclusion, the study presented here characterizes not only the different cell populations involved in the differentiation of early EPCs into mature ECs but also the transition stage where the maturation step takes place by demonstration of the new formation of WPBs. In this respect, these investigations provide new insights into the in vitro differentiation which could have some in vivo correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号