首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryo-correlative light and electron microscopy (cryo-CLEM) offers a unique way to analyze the high-resolution structural information of cryo-vitrified specimen by cryo-electron microscopy (cryo-EM) with the guide of the search for unique events by cryo-fluorescence microscopy (cryo-FM). To achieve cryo-FM, a trade-off must be made between the temperature and performance of objective lens. The temperature of specimen should be kept below devitrification while the distance between the objective lens and specimen should be short enough for high resolution imaging. Although special objective lens was designed in many current cryo-FM approaches, the unavoided frosting and ice contamination are still affecting the efficiency of cryo-CLEM. In addition, the correlation accuracy between cryo-FM and cryo-EM would be reduced during the current specimen transfer procedure. Here, we report an improved cryo-CLEM technique (high-vacuum optical platform for cryo-CLEM, HOPE) based on a high-vacuum optical stage and a commercial cryo-EM holder. The HOPE stage comprises of a special adapter to suit the cryo-EM holder and a high-vacuum chamber with an anti-contamination system. It provides a clean and enduring environment for cryo specimen, while the normal dry objective lens in room temperature can be used via the optical windows. The ‘touch-free’ specimen transfer via cryo-EM holder allows least specimen deformation and thus maximizes the correlation accuracy between cryo-FM and cryo-EM. Besides, we developed a software to perform semi-automatic cryo-EM acquisition of the target region localized by cryo-FM. Our work provides a new solution for cryo-CLEM and can be adapted for different commercial fluorescence microscope and electron microscope.  相似文献   

2.
Remarkable progress in correlative light and electron cryo-microscopy(cryo-CLEM) has been made in the past decade. A crucial component for cryo-CLEM is a dedicated cryo-fluorescence microscope(cryo-FM). Here, we describe an ultra-stable superresolution cryo-FM that exhibits excellent thermal and mechanical stability. The temperature fluctuations in 10 h are less than0.06 K, and the mechanical drift over 5 h is less than 200 nm in three dimensions. We have demonstrated the super-resolution imaging capability of this system(average single molecule localization accuracy of ~13.0 nm). The results suggest that our system is particularly suitable for long-term observations, such as single molecule localization microscopy(SMLM) and cryogenic super-resolution correlative light and electron microscopy(csCLEM).  相似文献   

3.
Cryo-electron tomography of cells: connecting structure and function   总被引:3,自引:3,他引:0  
Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms.  相似文献   

4.
本文利用冷冻电子断层扫描成像技术研究了原代培养海马神经元中线粒体膜的动态变化. 线粒体的分裂与融合是线粒体膜动态变化的主要方式,也是维持线粒体功能正常的重要手段. 线粒体分裂的机制研究以往是基于荧光标记的光学显微成像,由于分辨率的限制并不能直接观察到线粒体分裂过程中的超微结构特征. 冷冻电子断层成像通过尽可能保持样品生理状态从而获得更真实的结构信息. 本文通过对原代海马神经元中的自发性线粒体膜动态变化的成像,发现中央分裂和外周分裂的线粒体都与内质网在空间上存在一定的相互作用,内质网通过缠绕在线粒体分裂位点来参与分裂过程. 值得注意的是,还发现部分线粒体会出现线粒体外膜与内膜分离的现象,形成“无基质”的特殊区域. 这些可能都表明了线粒体质量控制的方式.  相似文献   

5.
The potential of energy filtering and direct electron detection for cryo-electron microscopy (cryo-EM) has been well documented. Here, we assess the performance of recently introduced hardware for cryo-electron tomography (cryo-ET) and subtomogram averaging (STA), an increasingly popular structural determination method for complex 3D specimens. We acquired cryo-ET datasets of EIAV virus-like particles (VLPs) on two contemporary cryo-EM systems equipped with different energy filters and direct electron detectors (DED), specifically a Krios G4, equipped with a cold field emission gun (CFEG), Thermo Fisher Scientific Selectris X energy filter, and a Falcon 4 DED; and a Krios G3i, with a Schottky field emission gun (XFEG), a Gatan Bioquantum energy filter, and a K3 DED. We performed constrained cross-correlation-based STA on equally sized datasets acquired on the respective systems. The resulting EIAV CA hexamer reconstructions show that both systems perform comparably in the 4–6 Å resolution range based on Fourier-Shell correlation (FSC). In addition, by employing a recently introduced multiparticle refinement approach, we obtained a reconstruction of the EIAV CA hexamer at 2.9 Å. Our results demonstrate the potential of the new generation of energy filters and DEDs for STA, and the effects of using different processing pipelines on their STA outcomes.  相似文献   

6.
Cryogenic correlative light and electron microscopy (cryo-CLEM) seeks to leverage orthogonal information present in two powerful imaging modalities. While recent advances in cryogenic electron microscopy (cryo-EM) allow for the visualization and identification of structures within cells at the nanometer scale, information regarding the cellular environment, such as pH, membrane potential, ionic strength, etc., which influences the observed structures remains absent. Fluorescence microscopy can potentially be used to reveal this information when specific labels, known as fluorescent biosensors, are used, but there has been minimal use of such biosensors in cryo-CLEM to date.Here we demonstrate the applicability of one such biosensor, the fluorescent protein roGFP2, for cryo-CLEM experiments. At room temperature, the ratio of roGFP2 emission brightness when excited at 425 nm or 488 nm is known to report on the local redox potential. When samples containing roGFP2 are rapidly cooled to 77 K in a manner compatible with cryo-EM, the ratio of excitation peaks remains a faithful indicator of the redox potential at the time of freezing. Using purified protein in different oxidizing/reducing environments, we generate a calibration curve which can be used to analyze in situ measurements. As a proof-of-principle demonstration, we investigate the oxidation/reduction state within vitrified Caulobacter crescentus cells. The polar organizing protein Z (PopZ) localizes to the polar regions of C. crescentus where it is known to form a distinct microdomain. By expressing an inducible roGFP2-PopZ fusion we visualize individual microdomains in the context of their redox environment.  相似文献   

7.
Electron microscopy (EM) provided fundamental insights about the ultrastructure of neuronal synapses. The large amount of information present in the contemporary EM datasets precludes a thorough assessment by visual inspection alone, thus requiring computational methods for the analysis of the data. Here, I review image processing software methods ranging from membrane tracing in large volume datasets to high resolution structures of synaptic complexes. Particular attention is payed to molecular level analysis provided by recent cryo-electron microscopy and tomography methods.  相似文献   

8.
The development of cryo-focused ion beam (cryo-FIB) for the thinning of frozen-hydrated biological specimens enabled cryo-electron tomography (cryo-ET) analysis in unperturbed cells and tissues. However, the volume represented within a typical FIB lamella constitutes a small fraction of the biological specimen. Retaining low-abundance and dynamic subcellular structures or macromolecular assemblies within such limited volumes requires precise targeting of the FIB milling process. In this study, we present the development of a cryo-stage allowing for spinning-disk confocal light microscopy at cryogenic temperatures and describe the incorporation of the new hardware into existing workflows for cellular sample preparation by cryo-FIB. Introduction of fiducial markers and subsequent computation of three-dimensional coordinate transformations provide correlation between light microscopy and scanning electron microscopy/FIB. The correlative approach is employed to guide the FIB milling process of vitrified cellular samples and to capture specific structures, namely fluorescently labeled lipid droplets, in lamellas that are 300 nm thick. The correlation procedure is then applied to localize the fluorescently labeled structures in the transmission electron microscopy image of the lamella. This approach can be employed to navigate the acquisition of cryo-ET data within FIB-lamellas at specific locations, unambiguously identified by fluorescence microscopy.  相似文献   

9.
Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells.  相似文献   

10.
Clathrin triskelions can assemble into lattices of different shapes, sizes and symmetries. For many years, the structures of clathrin lattices have been studied by single particle cryo-electron microscopy, which probed the architecture of the D6 hexagonal barrel clathrin coat at the molecular level. By introducing additional image processing steps we have recently produced a density map for the D6 barrel clathrin coat at subnanometer resolution, enabling us to generate an atomic model for this lattice [Fotin, A., Cheng, Y., Sliz, P., Grigorieff, N., Harrison, S.C., Kirchhausen, T., Walz, T., 2004. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573-579]. We describe in detail here the image processing steps that we have added to produce a density map at this high resolution. These procedures should be generally applicable and may thus help determine the structures of other large protein assemblies to higher resolution by single particle cryo-electron microscopy.  相似文献   

11.
Cryo-electron tomography (cryo-ET) has reached nanoscale resolution for in situ three-dimensional imaging of macromolecular complexes and organelles. Yet its current resolution is not sufficient to precisely localize or identify most proteins in situ; for example, the location and arrangement of components of the nexin-dynein regulatory complex (N-DRC), a key regulator of ciliary/flagellar motility that is conserved from algae to humans, have remained elusive despite many cryo-ET studies of cilia and flagella. Here, we developed an in situ localization method that combines cryo-ET/subtomogram averaging with the clonable SNAP tag, a widely used cell biological probe to visualize fusion proteins by fluorescence microscopy. Using this hybrid approach, we precisely determined the locations of the N and C termini of DRC3 and the C terminus of DRC4 within the three-dimensional structure of the N-DRC in Chlamydomonas flagella. Our data demonstrate that fusion of SNAP with target proteins allowed for protein localization with high efficiency and fidelity using SNAP-linked gold nanoparticles, without disrupting the native assembly, structure, or function of the flagella. After cryo-ET and subtomogram averaging, we localized DRC3 to the L1 projection of the nexin linker, which interacts directly with a dynein motor, whereas DRC4 was observed to stretch along the N-DRC base plate to the nexin linker. Application of the technique developed here to the N-DRC revealed new insights into the organization and regulatory mechanism of this complex, and provides a valuable tool for the structural dissection of macromolecular complexes in situ.  相似文献   

12.
Visualization of cellular processes at a resolution of the individual protein should involve integrative and complementary approaches that can eventually draw realistic functional and cellular landscapes. Electron tomography of vitrified but otherwise unaltered cells emerges as a central method for three-dimensional reconstruction of cellular architecture at a resolution of 2-6 nm. While a combination of correlative light-based microscopy with cryo-electron tomography (cryo-ET) provides medium-resolution insight into pivotal cellular processes, fitting high-resolution structural approaches, for example, X-ray crystallography, into reconstructed macromolecular assemblies provides unprecedented information on native protein assemblies. Thus, cryo-ET bridges the resolution gap between cellular and structural biology. In this article, we focus on the study of eukaryotic cells and macromolecular complexes in a close-to-life-state. We discuss recent developments and structural findings enabling major strides to be made in understanding complex physiological functions.  相似文献   

13.
A method is described for examining water dispersible biopolymers in the frozen, hydrated state by electron microscopy using the filamentous bacterial viruses Pf1 and fd as examples. The technique reveals liquid-crystalline textures that correlate well with polarizing microscopy of magnetically oriented specimens. At higher magnification the packing of the virus particle is revealed to a spatial resolution of better than 30 Å, thus linking directly with data from X-ray diffraction and optical microscopy. Electron diffraction confirms that the structure is preserved to high resolution (4 Å). The technique permits a detailed understanding of the processes involved in the orientation of these samples in a strong magnetic field and clarifies the long-range bi-axial properties of some fibres as seen by X-ray diffraction and optical microscopy.  相似文献   

14.
The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (~3.0?Å) and size (~310.0?Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508?Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9?Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations.  相似文献   

15.
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust ‘cryo-GFP’ remains elusive. Readily-synthesized gold nanomaterials conjugated to small ‘affinity modules’ may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.  相似文献   

16.
Actin contributes to an exceptionally wide range of cellular processes through the assembly and disassembly of highly dynamic and ordered structures. Visualizing these structures in cells can help us understand how the molecular players of the actin machinery work together to produce force-generating systems. In recent years, cryo-electron tomography (cryo-ET) has become the method of choice for structural analysis of the cell interior at the molecular scale. Here we review advances in cryo-ET workflows that have enabled this transformation, especially the automation of sample preparation procedures, data collection, and processing. We discuss new structural analyses of dynamic actin assemblies in cryo-preserved cells, which have provided mechanistic insights into actin assembly and function at the nanoscale. Finally, we highlight the latest visual proteomics studies of actin filaments and their interactors reaching sub-nanometer resolutions in cells.  相似文献   

17.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.  相似文献   

18.
Bacterial ATP binding cassette (ABC) exporters fulfill a wide variety of transmembrane transport roles and are homologous to the human multidrug resistance P-glycoprotein. Recent X-ray structures of the exporters MsbA and Sav1866 have begun to describe the conformational changes that accompany the ABC transport cycle. Here we present cryo-electron microscopy structures of MsbA reconstituted into a lipid bilayer. Using ATPase inhibitors, we captured three nucleotide transition states of the transporter that were subsequently reconstituted into helical arrays. The enzyme–substrate complex (trapped by ADP-aluminum fluoride or AMPPNP) crystallized in a different helical lattice than the enzyme–product complex (trapped by ADP-vanadate). 20 Å resolution maps were calculated for each state and revealed MsbA to be a dimer with a large channel between the membrane spanning domains, similar to the outward facing crystal structures of MsbA and Sav1866. This suggests that while there are likely structural differences between the nucleotide transition states, membrane embedded MsbA remains in an outward facing conformation while nucleotide is bound.  相似文献   

19.
Cryo-electron tomography (cryo-ET) allows the visualization of supramolecular architecture in cells preserved in a close-to-physiological state. In order to supplement the structural information obtained by cryo-ET with the functional state of the molecules involved based on fluorescent labeling we developed a method of correlating light microscopy and cryo-ET. This method is suitable for investigating complicated cellular landscapes such as mature neurons grown in culture. It has the advantage that a correlation is obtained without exposing a feature of interest to additional electron irradiation, and that it does not rely on visual recognition of features. Different modes of correlation are presented here: a feature identified on a light microscopy image is used to guide the cryo-ET investigation, and cryo-tomograms are correlated to light microscopy images. Cryo-tomograms of a neuronal synapse and of an isolated presynaptic terminal are shown as examples of the correlative method. The correlation method presented here can be expected to provide new insights into the structure-function relationship of supramolecular organization in neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号