共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular advances in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) 总被引:1,自引:0,他引:1
The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identifi- 相似文献
2.
A severe acute respiratory syndrome-associated coronavirus-specific protein enhances virulence of an attenuated murine coronavirus
下载免费PDF全文

Pewe L Zhou H Netland J Tangudu C Olivares H Shi L Look D Gallagher T Perlman S 《Journal of virology》2005,79(17):11335-11342
Most animal species that can be infected with the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) do not reproducibly develop clinical disease, hindering studies of pathogenesis. To develop an alternative system for the study of SARS-CoV, we introduced individual SARS-CoV genes (open reading frames [ORFs]) into the genome of an attenuated murine coronavirus. One protein, the product of SARS-CoV ORF6, converted a sublethal infection to a uniformly lethal encephalitis and enhanced virus growth in tissue culture cells, indicating that SARS-CoV proteins function in the context of a heterologous coronavirus infection. Furthermore, these results suggest that the attenuated murine coronavirus lacks a virulence gene residing in SARS-CoV. Recombinant murine coronaviruses cause a reproducible and well-characterized clinical disease, offer virtually no risk to laboratory personnel, and should be useful for elucidating the role of SARS-CoV nonstructural proteins in viral replication and pathogenesis. 相似文献
3.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) structural proteins (S, E, M, and NC) localize in different
subcellular positions when expressed individually. However, SARS-CoV M protein is co-localized almost entirely with S, E,
or NC protein when co-expressed in the cells. On the other hand, only partial co-localization was observed when S and E, S
and NC, or E and NC were co-expressed in the cells. Interactions between SARS-CoV M and other structural proteins but not
interactions between S and E, S and NC, or E and NC were further demonstrated by co-immunoprecipitation assay. These results
indicate that SARS-CoV M protein, similar to the M proteins of other coronaviruses, plays a pivotal role in virus assembly.
The cytoplasmic C-terminus domain of SARS-CoV M protein was responsible for binding to NC protein. Multiple regions of M protein
interacted with E and S proteins. A model for the interactions between SARS-CoV M protein and other structural proteins is
proposed. This study helps us better understand protein-protein interactions during viral assembly of SARS-CoV.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
4.
Feng Mu Dongsheng Niu Jingsong Mu Bo He Weiguo Han Baoxing Fan Shengyong Huang Yan Qiu Bo You Weijun Chen 《BMC microbiology》2008,8(1):207
Background
In the absence of effective drugs, controlling SARS relies on the rapid identification of cases and appropriate management of the close contacts, or effective vaccines for SARS. Therefore, developing specific and sensitive laboratory tests for SARS as well as effective vaccines are necessary for national authorities. 相似文献5.
The SARS-CoV open reading frame 6 (ORF6) is transcribed into mRNA6 and encodes a putative 7.5 kDa accessory protein, SARS 6, with unknown function. In this study, we have confirmed the SARS 6 protein expression in lung and intestine tissues of the SARS patients and in SARS-CoV infected Vero E6 cells by immunohistochemistry. Further studies by immunoblot and confocal microscopy analyses revealed the expression and the endoplasmic reticulum (ER) localization of the recombinant SARS 6 protein in mammalian cells. Expression of SARS 6 protein in mammalian cells elicits biological activity of stimulating cellular DNA synthesis. 相似文献
6.
Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein
下载免费PDF全文

Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit. 相似文献
7.
SARS 8b is one of the putative accessory proteins of the severe acute respiratory syndrome-associated coronavirus (SARS-CoV) with unknown functions. In this study, the cellular localization and activity of this estimated 9.6 kDa protein were examined. Confocal microscopy results indicated that SARS 8b is localized in both nucleus and cytoplasm of mammalian cells. Functional study revealed that overexpression of SARS 8b induced DNA synthesis. Coexpression of SARS 8b and SARS 6, a previously characterized SARS-CoV accessory protein, did not elicit synergistic effects on DNA synthesis. 相似文献
8.
Apical entry and release of severe acute respiratory syndrome-associated coronavirus in polarized Calu-3 lung epithelial cells
下载免费PDF全文

Severe acute respiratory syndrome (SARS), caused by a novel coronavirus (CoV) known as SARS-CoV, is a contagious and life-threatening respiratory illness with pneumocytes as its main target. A full understanding of how SARS-CoV would interact with lung epithelial cells will be vital for advancing our knowledge of SARS pathogenesis. However, an in vitro model of SARS-CoV infection using relevant lung epithelial cells is not yet available, making it difficult to dissect the pathogenesis of SARS-CoV in the lungs. Here, we report that SARS-CoV can productively infect human bronchial epithelial Calu-3 cells, causing cytopathic effects, a process reflective of its natural course of infection in the lungs. Indirect immunofluorescence studies revealed a preferential expression of angiotensin-converting enzyme 2 (ACE-2), the functional receptor of SARS-CoV, on the apical surface. Importantly, both ACE-2 and viral antigen appeared to preferentially colocalize at the apical domain of infected cells. In highly polarized Calu-3 cells grown on the membrane inserts, we found that cells exposed to virus through the apical rather than the basolateral surface showed high levels of viral replication. Progeny virus was released into the apical chamber at titers up to 5 logs higher than those recovered from the basolateral chambers of polarized cultures. Taken together, these results indicate that SARS-CoV almost exclusively entered and was released from the apical domain of polarized Calu-3 cells, which might provide important insight into the mechanism of transmission and pathogenesis of SARS-CoV. 相似文献
9.
Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro
下载免费PDF全文

The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury. 相似文献
10.
Ziebuhr J 《Current opinion in microbiology》2004,7(4):412-419
The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. Coronaviruses and their closest relatives possess extremely large plus-strand RNA genomes and employ unique mechanisms and enzymes in RNA synthesis that separate them from all other RNA viruses. The SARS epidemic prompted a variety of studies on multiple aspects of the coronavirus replication cycle, yielding both rapid identification of the entry mechanisms of SARS-CoV into host cells and valuable structural and functional information on SARS-CoV proteins. These recent advances in coronavirus research have important implications for the development of anti-SARS drugs and vaccines. 相似文献
11.
Zhou M Xu D Li X Li H Shan M Tang J Wang M Wang FS Zhu X Tao H He W Tien P Gao GF 《Journal of immunology (Baltimore, Md. : 1950)》2006,177(4):2138-2145
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines. 相似文献
12.
Severe acute respiratory syndrome (SARS) is a deadly form of pneumonia caused by a novel coronavirus, a viral family responsible for mild respiratory tract infections in a wide variety of animals including humans, pigs, cows, mice, cats, and birds. Analyses to date have been unable to identify the precise origin of the SARS coronavirus. We used Bayesian, neighbor-joining, and split decomposition phylogenetic techniques on the SARS virus replicase, surface spike, matrix, and nucleocapsid proteins to reveal the evolutionary origin of this recently emerging infectious agent. The analyses support a mammalian-like origin for the replicase protein, an avian-like origin for the matrix and nucleocapsid proteins, and a mammalian-avian mosaic origin for the host-determining spike protein. A bootscan recombination analysis of the spike gene revealed high nucleotide identity between the SARS virus and a feline infectious peritonitis virus throughout the gene, except for a 200- base-pair region of high identity to an avian sequence. These data support the phylogenetic analyses and suggest a possible past recombination event between mammalian-like and avian-like parent viruses. This event occurred near a region that has been implicated to be the human receptor binding site and may have been directly responsible for the switch of host of the SARS coronavirus from animals to humans. 相似文献
13.
Voss D Kern A Traggiai E Eickmann M Stadler K Lanzavecchia A Becker S 《FEBS letters》2006,580(3):968-973
The coronavirus membrane protein (M) is the key player in the assembly of virions at intracellular membranes between endoplasmic-reticulum and Golgi-complex. Using a newly established human monoclonal anti-M antibody we detected glycosylated and nonglycosylated membrane-associated M in severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infected cells and in purified virions. Further analyses revealed that M contained a single N-glycosylation site at asparagine 4. Recombinant M was transported to the plasma membrane and gained complex-type N-glycosylation. In SARS-CoV infected cells and in purified virions, however, N-glycosylation of M remained endoglycosidase H-sensitive suggesting that trimming of the N-linked sugar side chain is inhibited. 相似文献
14.
Schwegmann-Wessels C Al-Falah M Escors D Wang Z Zimmer G Deng H Enjuanes L Naim HY Herrler G 《The Journal of biological chemistry》2004,279(42):43661-43666
Coronaviruses (CoV) mature by a budding process at intracellular membranes. Here we showed that the major surface protein S of a porcine CoV (transmissible gastroenteritis virus) is not transported to the cell surface but is retained intracellularly. Site-directed mutagenesis indicated that a tyrosine-dependent signal (YXXI) in the cytoplasmic tail is essential for intracellular localization of the S protein. Surface expression of mutant proteins was evident by immunofluorescence analysis and surface biotinylation. Intracellularly retained S proteins only contained endoglycosidase H-sensitive N-glycans, whereas mutant proteins that migrated to the plasma membrane acquired N-linked oligosaccharides of the complex type. Corresponding tyrosine residues are present in the cytoplasmic tails of the S proteins of other animal CoV but not in the tail portion of the S protein of severe acute respiratory syndrome (SARS)-CoV. Changing the SEPV tetrapeptide in the cytoplasmic tail to YEPI resulted in intracellular retention of the S protein of SARS-CoV. As the S proteins of CoV have receptor binding and fusion activities and are the main target of neutralizing antibodies, the differences in the transport behavior of the S proteins suggest different strategies in the virus host interactions between SARS-CoV and other coronaviruses. 相似文献
15.
Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus
下载免费PDF全文

McCray PB Pewe L Wohlford-Lenane C Hickey M Manzel L Shi L Netland J Jia HP Halabi C Sigmund CD Meyerholz DK Kirby P Look DC Perlman S 《Journal of virology》2007,81(2):813-821
The severe acute respiratory syndrome (SARS), caused by a novel coronavirus (SARS-CoV), resulted in substantial morbidity, mortality, and economic losses during the 2003 epidemic. While SARS-CoV infection has not recurred to a significant extent since 2003, it still remains a potential threat. Understanding of SARS and development of therapeutic approaches have been hampered by the absence of an animal model that mimics the human disease and is reproducible. Here we show that transgenic mice that express the SARS-CoV receptor (human angiotensin-converting enzyme 2 [hACE2]) in airway and other epithelia develop a rapidly lethal infection after intranasal inoculation with a human strain of the virus. Infection begins in airway epithelia, with subsequent alveolar involvement and extrapulmonary virus spread to the brain. Infection results in macrophage and lymphocyte infiltration in the lungs and upregulation of proinflammatory cytokines and chemokines in both the lung and the brain. This model of lethal infection with SARS-CoV should be useful for studies of pathogenesis and for the development of antiviral therapies. 相似文献
16.
Enhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the N-terminal hydrophobic region but not C-terminal sorting motifs
下载免费PDF全文

Netland J Ferraro D Pewe L Olivares H Gallagher T Perlman S 《Journal of virology》2007,81(20):11520-11525
Severe acute respiratory syndrome coronavirus encodes several accessory proteins of unknown function. We previously showed that one such protein, encoded by ORF6, enhanced the growth of mouse hepatitis virus in tissue culture cells and in mice. Protein 6 consists of an N-terminal hydrophobic peptide and a C-terminal region containing intracellular protein sorting motifs. Herein, we show that mutation of the hydrophobic region but not the sorting motifs affected the ability of protein 6 to enhance virus growth. Collectively, these results support the notion that the 6 protein interacts with membrane-bound viral replication or assembly machinery to directly enhance virus replication and virulence in animals. 相似文献
17.
Role for nonstructural protein 1 of severe acute respiratory syndrome coronavirus in chemokine dysregulation
下载免费PDF全文

Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by a novel coronavirus. Since its associated morbidity and mortality have been postulated to be due to immune dysregulation, we investigated which of the viral proteins is responsible for chemokine overexpression. To delineate the viral and cellular factor interactions, the role of four SARS coronavirus proteins, including nonstructural protein 1 (nsp-1), nsp-5, envelope, and membrane, were examined in terms of cytokine induction. Our results showed that the SARS coronavirus nsp-1 plays an important role in CCL5, CXCL10, and CCL3 expression in human lung epithelial cells via the activation of NF-kappaB. 相似文献
18.
Civets are equally susceptible to experimental infection by two different severe acute respiratory syndrome coronavirus isolates 总被引:13,自引:0,他引:13
下载免费PDF全文

Wu D Tu C Xin C Xuan H Meng Q Liu Y Yu Y Guan Y Jiang Y Yin X Crameri G Wang M Li C Liu S Liao M Feng L Xiang H Sun J Chen J Sun Y Gu S Liu N Fu D Eaton BT Wang LF Kong X 《Journal of virology》2005,79(4):2620-2625
Severe acute respiratory syndrome (SARS) was caused by a novel virus now known as SARS coronavirus (SARS-CoV). The discovery of SARS-CoV-like viruses in masked palm civets (Paguma larvata) raises the possibility that civets play a role in SARS-CoV transmission. To test the susceptibility of civets to experimental infection by different SARS-CoV isolates, 10 civets were inoculated with two human isolates of SARS-CoV, BJ01 (with a 29-nucleotide deletion) and GZ01 (without the 29-nucleotide deletion). All inoculated animals displayed clinical symptoms, such as fever, lethargy, and loss of aggressiveness, and the infection was confirmed by virus isolation, detection of viral genomic RNA, and serum-neutralizing antibodies. Our data show that civets were equally susceptible to SARS-CoV isolates GZ01 and BJ01. 相似文献
19.
S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients 总被引:15,自引:0,他引:15
下载免费PDF全文

Hofmann H Hattermann K Marzi A Gramberg T Geier M Krumbiegel M Kuate S Uberla K Niedrig M Pöhlmann S 《Journal of virology》2004,78(12):6134-6142
The severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia with a fatal outcome in approximately 10% of patients. SARS-CoV is not closely related to other coronaviruses but shares a similar genome organization. Entry of coronaviruses into target cells is mediated by the viral S protein. We functionally analyzed SARS-CoV S using pseudotyped lentiviral particles (pseudotypes). The SARS-CoV S protein was found to be expressed at the cell surface upon transient transfection. Coexpression of SARS-CoV S with human immunodeficiency virus-based reporter constructs yielded viruses that were infectious for a range of cell lines. Most notably, viral pseudotypes harboring SARS-CoV S infected hepatoma cell lines but not T- and B-cell lines. Infection of the hepatoma cell line Huh-7 was also observed with replication-competent SARS-CoV, indicating that hepatocytes might be targeted by SARS-CoV in vivo. Inhibition of vacuolar acidification impaired infection by SARS-CoV S-bearing pseudotypes, indicating that S-mediated entry requires low pH. Finally, infection by SARS-CoV S pseudotypes but not by vesicular stomatitis virus G pseudotypes was efficiently inhibited by a rabbit serum raised against SARS-CoV particles and by sera from SARS patients, demonstrating that SARS-CoV S is a target for neutralizing antibodies and that such antibodies are generated in SARS-CoV-infected patients. Our results show that viral pseudotyping can be employed for the analysis of SARS-CoV S function. Moreover, we provide evidence that SARS-CoV infection might not be limited to lung tissue and can be inhibited by the humoral immune response in infected patients. 相似文献
20.
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes a highly basic nucleocapsid (N) protein of 422 amino acids. Similar to other coronavirus N proteins, SARS-CoV N protein is predicted to be phosphorylated and may contain nuclear localization signals, serine/arginine-rich motif, RNA binding domain and regions responsible for self-association and homo-oligomerization. In this study, we demonstrate that the protein is posttranslationally modified by covalent attachment to the small ubiquitin-like modifier. The major sumoylation site was mapped to the (62)lysine residue of the N protein. Further expression and characterization of wild type N protein and K62A mutant reveal that sumoylation of the N protein drastically promotes its homo-oligomerization, and plays certain roles in the N protein-mediated interference of host cell division. This is the first report showing that a coronavirus N protein undergoes posttranslational modification by sumoylation, and the functional implication of this modification in the formation of coronavirus ribouncleoprotein complex, virion assembly and virus-host interactions. 相似文献