首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Ribosomal proteins are integral to ribosome biogenesis, and function in protein synthesis. In higher eukaryotes, loss of cytoplasmic ribosomal proteins results in a reduced growth rate as well as developmental defects. To what extent and how ribosomal proteins affect development is currently not known. Here we describe a semi-dominant mutation in the cytoplasmic ribosomal protein gene RPL27aC that affects multiple aspects of plant shoot development, including leaf patterning, inflorescence and floral meristem function, and seed set. In the embryo, RPL27aC is required to maintain the growth rate and for the transition from radial to bilateral symmetry associated with initiation of cotyledons. rpl27ac-1d embryos undergo stereotypical patterning to establish a globular embryo. However, a temporal delay in initiation and outgrowth of cotyledon primordia leads to development of an enlarged globular embryo prior to apical domain patterning. Defects in embryo development are coincident with tissue-specific ectopic expression of the shoot meristem genes SHOOT MERISTEMLESS (STM) and CUP-SHAPED COTYLEDON2 (CUC2), in addition to delayed expression of the abaxial gene FILAMENTOUS FLOWER (FIL) and mis-regulation of the auxin efflux effector PIN-FORMED1 (PIN1). Genetic interactions with other ribosomal protein mutants indicate that RPL27aC is a component of the ribosome. We propose that RPL27aC regulates discrete developmental events by controlling spatial and temporal expression of developmental patterning genes via an as yet undefined process involving the ribosome.  相似文献   

5.
6.
Plants have many polarized cell types, but relatively little is known about the mechanisms that establish polarity. The orc mutant was identified originally by defects in root patterning, and positional cloning revealed that the affected gene encodes STEROL METHYLTRANSFERASE1, which is required for the appropriate synthesis and composition of major membrane sterols. smt1(orc) mutants displayed several conspicuous cell polarity defects. Columella root cap cells revealed perturbed polar positioning of different organelles, and in the smt1(orc) root epidermis, polar initiation of root hairs was more randomized. Polar auxin transport and expression of the auxin reporter DR5-beta-glucuronidase were aberrant in smt1(orc). Patterning defects in smt1(orc) resembled those observed in mutants of the PIN gene family of putative auxin efflux transporters. Consistently, the membrane localization of the PIN1 and PIN3 proteins was disturbed in smt1(orc), whereas polar positioning of the influx carrier AUX1 appeared normal. Our results suggest that balanced sterol composition is a major requirement for cell polarity and auxin efflux in Arabidopsis.  相似文献   

7.
8.
The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomains of the meristem. Using transposon-mediated activation tagging, we have identified Dornr?schen (drn-D) mutants of Arabidopsis that prematurely arrest shoot meristem activity with the formation of radialized lateral organs. The mutated gene (DRN/ESR1), which encodes an AP2/ERF protein, is expressed in a subdomain of meristem stem cells, in lateral organ anlagen, and transiently in the distal domain of organ primordia. During the development of drn-D mutants, expression of the homeobox gene SHOOTMERISTEMLESS is downregulated and later reactivated in an altered domain. In addition, we found increased expression of CLAVATA3 and WUSCHEL, two genes that antagonistically regulate stem cell fate in meristems. These findings suggest that the DRN/ESR1 gene product is involved in the regulation of gene expression patterns in meristems. Furthermore, specific misexpression of DRN in meristem stem cells affects organ polarity and outgrowth in the meristem periphery, indicating that DRN/ESR1 itself, or a process regulated by DRN/ESR1, can act non-cell-autonomously. We elaborate on the role of DRN/ESR1 in meristem and organ development and discuss its possible role in the process of shoot regeneration.  相似文献   

9.
In dicotyledonous plants, two cotyledons are formed at bilaterally symmetric positions in the apical region of the embryo. Single mutations in the PIN-FORMED1 (PIN1) and PINOID (PID) genes, which mediate auxin-dependent organ formation, moderately disrupt the symmetric patterning of cotyledons. We report that the pin1 pid double mutant displays a striking phenotype that completely lacks cotyledons and bilateral symmetry. In the double mutant embryo, the expression domains of CUP-SHAPED COTYLEDON1 (CUC1), CUC2 and SHOOT MERISTEMLESS (STM), the functions of which are normally required to repress growth at cotyledon boundaries, expand to the periphery and overlap with a cotyledon-specific marker, FILAMENTOUS FLOWER. Elimination of CUC1, CUC2 or STM activity leads to recovery of cotyledon growth in the double mutant, suggesting that the negative regulation of these boundary genes by PIN1 and PID is sufficient for primordium growth. We also show that PID mRNA is localized mainly to the boundaries of cotyledon primordia and early expression of PID mRNA is dependent on PIN1. Our results demonstrate the redundant roles of PIN1 and PID in the establishment of bilateral symmetry, as well as in the promotion of cotyledon outgrowth, the latter of which involves the negative regulation of CUC1, CUC2 and STM genes, which are boundary-specific downstream effectors.  相似文献   

10.
11.
12.
ROP GTPases are crucial for the establishment of cell polarity and for controlling responses to hormones and environmental signals in plants. In this work, we show that ROP3 plays important roles in embryo development and auxin-dependent plant growth. Loss-of-function and dominant-negative (DN) mutations in ROP3 induced a spectrum of similar defects starting with altered cell division patterning during early embryogenesis to postembryonic auxin-regulated growth and developmental responses. These resulted in distorted embryo development, defective organ formation, retarded root gravitropism, and reduced auxin-dependent hypocotyl elongation. Our results showed that the expression of AUXIN RESPONSE FACTOR5/MONOPTEROS and root master regulators PLETHORA1 (PLT1) and PLT2 was reduced in DN-rop3 mutant embryos, accounting for some of the observed patterning defects. ROP3 mutations also altered polar localization of auxin efflux proteins (PINs) at the plasma membrane (PM), thus disrupting auxin maxima in the root. Notably, ROP3 is induced by auxin and prominently detected in root stele cells, an expression pattern similar to those of several stele-enriched PINs. Our results demonstrate that ROP3 is important for maintaining the polarity of PIN proteins at the PM, which in turn ensures polar auxin transport and distribution, thereby controlling plant patterning and auxin-regulated responses.  相似文献   

13.
14.
Endocytosis is a crucial mechanism by which eukaryotic cells internalize extracellular and plasma membrane material, and it is required for a multitude of cellular and developmental processes in unicellular and multicellular organisms. In animals and yeast, the best characterized pathway for endocytosis depends on the function of the vesicle coat protein clathrin. Clathrin-mediated endocytosis has recently been demonstrated also in plant cells, but its physiological and developmental roles remain unclear. Here, we assessed the roles of the clathrin-mediated mechanism of endocytosis in plants by genetic means. We interfered with clathrin heavy chain (CHC) function through mutants and dominant-negative approaches in Arabidopsis thaliana and established tools to manipulate clathrin function in a cell type-specific manner. The chc2 single mutants and dominant-negative CHC1 (HUB) transgenic lines were defective in bulk endocytosis as well as in internalization of prominent plasma membrane proteins. Interference with clathrin-mediated endocytosis led to defects in constitutive endocytic recycling of PIN auxin transporters and their polar distribution in embryos and roots. Consistent with this, these lines had altered auxin distribution patterns and associated auxin transport-related phenotypes, such as aberrant embryo patterning, imperfect cotyledon specification, agravitropic growth, and impaired lateral root organogenesis. Together, these data demonstrate a fundamental role for clathrin function in cell polarity, growth, patterning, and organogenesis in plants.  相似文献   

15.
In the nematode Caenorhabditis elegans, sperm entry into the oocyte triggers the completion of meiosis and the establishment of the embryonic anteroposterior (AP) axis. How the early embryo makes the transition from a meiotic to a mitotic zygote and coordinates cell cycle changes with axis formation remains unclear. We have discovered roles for the C. elegans puromycin-sensitive aminopeptidase PAM-1 in both cell cycle progression and AP axis formation, further implicating proteolytic regulation in these processes. pam-1 mutant embryos exhibit a delay in exit from meiosis: thus, this peptidase is required for progression to mitotic interphase. In addition, the centrosomes associated with the sperm pronucleus fail to closely associate with the posterior cortex in pam-1 mutants, and the AP axis is not specified. The meiotic exit and polarity defects are separable, as inactivation of the B-type cyclin CYB-3 in pam-1 mutants rescues the meiotic exit delay but not the polarity defects. Thus PAM-1 may regulate CYB-3 during meiotic exit but presumably targets other protein(s) to regulate polarity. We also show that the pam-1 gene is expressed both maternally and paternally, providing additional evidence that sperm-donated gene products have important roles during early embryogenesis in C. elegans. The degradation of proteins through ubiquitin-mediated proteolysis has been previously shown to regulate the cell cycle and AP axis formation in the C. elegans zygote. Our analysis of PAM-1 requirements shows that a puromycin-sensitive aminopeptidase is also required for proteolytic regulation of the oocyte to embryo transition.  相似文献   

16.
17.
18.
The rhombencephalic neural crest play several roles in craniofacial development. They give rise to the cranial sensory ganglia and much of the craniofacial skeleton, and are vital for patterning of the craniofacial muscles. The loss of Hoxa1 or Hoxa2 function affects the development of multiple neural crest-derived structures. To understand how these two genes function together in craniofacial development, an allele was generated that disrupts both of these linked genes. Some of the craniofacial defects observed in the double mutants were additive combinations of those that exist in each of the single mutants, indicating that each gene functions independently in the formation of these structures. Other defects were found only in the double mutants demonstrating overlapping or synergistic functions. We also uncovered multiple defects in the attachments and trajectories of the extrinsic tongue and hyoid muscles in Hoxa2 mutants. Interestingly, the abnormal trajectory of two of these muscles, the styloglossus and the stylohyoideus, blocked the attachment of the hyoglossus to the greater horn of the hyoid, which in turn correlated exactly with the presence of cleft palate in Hoxa2 mutants. We suggest that the hyoglossus, whose function is to depress the lateral edges of the tongue, when unable to make its proper attachment to the greater horn of the hyoid, forces the tongue to adopt an abnormal posture which blocks closure of the palatal shelves. Unexpectedly, in Hoxa1/Hoxa2 double mutants, the penetrance of cleft palate is dramatically reduced. We show that two compensatory defects, associated with the loss of Hoxa1 function, restore normal attachment of the hyoglossus to the greater horn thereby allowing the palatal shelves to lift and fuse above the flattened tongue.  相似文献   

19.
The vertebrate body plan features a consistent left-right (LR) asymmetry of internal organs. In several vertebrate embryos, motile cilia generate an asymmetric fluid flow that is necessary for normal LR development. However, the mechanisms involved in orienting LR asymmetric flow with previously established anteroposterior (AP) and dorsoventral (DV) axes remain poorly understood. In zebrafish, asymmetric flow is generated in Kupffer's vesicle (KV). The cellular architecture of KV is asymmetric along the AP axis, with more ciliated cells densely packed into the anterior region. Here, we identify a Rho kinase gene, rock2b, which is required for normal AP patterning of KV and subsequent LR development in the embryo. Antisense depletion of rock2b in the whole embryo or specifically in the KV cell lineage perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ LR asymmetries. Analyses of KV architecture demonstrated that rock2b knockdown altered the AP placement of ciliated cells without affecting cilia number or length. In control embryos, leftward flow across the anterior pole of KV was stronger than rightward flow at the posterior end, correlating with the normal AP asymmetric distribution of ciliated cells. By contrast, rock2b knockdown embryos with AP patterning defects in KV exhibited randomized flow direction and equal flow velocities in the anterior and posterior regions. Live imaging of Tg(dusp6:memGFP)(pt19) transgenic embryos that express GFP in KV cells revealed that rock2b regulates KV cell morphology. Our results suggest a link between AP patterning of the ciliated Kupffer's vesicle and LR patterning of the zebrafish embryo.  相似文献   

20.
Development is often coordinated by biologically active mobile compounds that move between cells or organs. Arabidopsis mutants with defects in the BYPASS1 (BPS1) gene overproduce an active mobile compound that moves from the root to the shoot and inhibits growth. Here, we describe two related Arabidopsis genes, BPS2 and BPS3. Analyses of single, double and triple mutants revealed that all three genes regulate production of the same mobile compound, the bps signal, with BPS1 having the largest role. The triple mutant had a severe embryo defect, including the failure to properly establish provascular tissue, the shoot meristem and the root meristem. Aberrant expression of PINFORMED1, DR5, PLETHORA1, PLETHORA2 and WUSCHEL-LIKE HOMEOBOX5 were found in heart-stage bps triple-mutant embryos. However, auxin-induced gene expression, and localization of the PIN1 auxin efflux transporter, were intact in bps1 mutants, suggesting that the primary target of the bps signal is independent of auxin response. Thus, the bps signal identifies a novel signaling pathway that regulates patterning and growth in parallel with auxin signaling, in multiple tissues and at multiple developmental stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号