首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous DNA damage as related to cancer and aging   总被引:32,自引:0,他引:32  
The endogenous background level of oxidant-induced DNA damage in vivo has been assayed by measuring 8-hydroxydeoxyguanosine (oh8dG), thymine glycol and thymidine glycol in urine and oh8dG in DNA. The level of oxidative DNA damage as measured by oh8dG in normal rat liver is shown to be extensive (1/130,000 bases in nuclear DNA and 1/8000 bases in mitochondrial DNA), especially in mtDNA. The methylation adduct 7-methylguanine (m7G) has also been found. m7G is one of about 5 adducts found on methylating DNA, and oh8dG is one of about 20 adducts found on oxidizing DNA, e.g., by radiation. We also discuss 3 hitherto unrecognized antioxidants in man.  相似文献   

2.
Our previous study showed that KG-1, a human acute leukemia cell line, has mutational loss of 8-oxoguanine (8-hydroxyguanine; oh(8)Gua) glycosylase 1 (OGG1) activity and that its viability is severely affected by 8-hydroxydeoxyguanosine (8-oxodeoxyguanosine; oh(8)dG). In the present study, the nature of the killing action of oh(8)dG on KG-1 was investigated. Signs observed in oh(8)dG-treated KG-1 cells indicated that death was due to apoptosis, as demonstrated by: increased sub-G(1) hypodiploid (apoptotic) cells, DNA fragmentation, and apoptotic body formation; loss of mitochondrial transmembrane potential, the release of cytochrome c from mitochondria into the cytosol, and the down-regulation of bcl-2; and the activation of caspases 8, 9, and 3, and the efficient inhibition of the apoptotic process by caspases inhibitors. This apoptosis appears not to be associated with Fas/Fas ligand because the expressions of these proteins were unchanged. Apoptotic KG-1 cells showed a high concentration of oh(8)Gua in DNA. Moreover, the increased concentration of oh(8)Gua in DNA, and the apoptotic process were not suppressed by the antioxidant, N-acetylcysteine, and thus the process is independent of reactive oxygen species. Of the 18 cancer cell lines treated with oh(8)dG, 3 cell lines (H9, CEM-CM3, and Molt-4) were found to be committed to apoptosis, and all of these showed very low OGG1 activity and a marked increase in the concentration of oh(8)Gua in DNA. These observations indicate that in addition to its mutagenic action, oh(8)Gua in DNA disturbs cell viability by inducing apoptosis.  相似文献   

3.
HPLC with electrochemical detection (HPLC-EC) is a highly sensitive and a selective method for detecting 8-hydroxy-2'-deoxyguanosine (oh8dG), a biomarker of oxidative DNA damage that is formed from hydroxyl radical attack of guanine residues in DNA. We propose that the noninvasive measurement of oh8dG in urine can be used to estimate in vivo oxidative damage. Application of this assay to urine samples obtained from rats of different ages and various species provide examples of the utility of this assay. The measurement of steady-state levels of oh8dG in DNA combined with the urinary excretion rates of oh8dG and oh8Gua, offer a powerful approach for estimating oxidative DNA damage and its repair. This method will be useful for studies designed to investigate the relationship of oxidative stress in DNA damage and the role of this damage in aging and cancer.  相似文献   

4.
5.
The repair enzyme 8-oxoguanine glycosylase/ apyrimidinic/apurinic lyase (OGG) removes 8-hydroxy-2'deoxyguanosine (oh8dG) in human cells. Our goal was to examine oh8dG-removing activity in the cell nuclei of male C57BL/6 mouse brains treated with either forebrain ischemia-reperfusion (FblR) or sham operations. We found that the OGG activity in nuclear extracts, under the condition in which other nucleases did not destroy the oligodeoxynucleotide duplex, excised oh8dG with the greatest efficiency on the oligodeoxynucleotide duplex containing oh8dG/dC and with less efficiency on the heteroduplex containing oh8dG/dT, oh8dG/dG, or oh8dG/dA. This specificity was the same as for the recombinant type 1 OGG (OGG1) of humans. We observed that the OGG1 peptide and its activity in the mouse brain were significantly increased after 90 min of ischemia and 20-30 min of reperfusion. The increase in the protein level and in the activity of brain OGG1 correlated positively with the elevation of FblR-induced DNA lesions in an indicator gene (the c-fos gene) of the brain. The data suggest a possibility that the OGG1 protein may excise oh8dG in the mouse brain and that the activity of OGG1 may have a functional role in reducing oxidative gene damage in the brain after FblR.  相似文献   

6.
Experimental stroke using a focal cerebral ischemia and reperfusion (FCIR) model was induced in male Long-Evans rats by a bilateral occlusion of both common carotid arteries and the right middle cerebral artery for 30-90 min, followed by various periods of reperfusion. Oxidative DNA lesions in the ipsilateral cortex were demonstrated using Escherichia coli formamidopyrimidine DNA N-glycosylase (Fpg protein)-sensitive sites (FPGSS), as labeled in situ using digoxigenin-dUTP and detected using antibodies against digoxigenin. Because Fpg protein removes 8-hydroxy-2'-deoxyguanine (oh8dG) and other lesions in DNA, FPGSS measure oxidative DNA damage. The number of FPGSS-positive cells in the cortex from the sham-operated control group was 3 +/- 3 (mean +/- SD per mm(2)). In animals that received 90 min occlusion and 15 min of reperfusion (FCIR 90/15), FPGSS-positive cells were significantly increased by 200-fold. Oxidative DNA damage was confirmed by using monoclonal antibodies against 8-hydroxy-guanosine (oh8G) and oh8dG. A pretreatment of RNase A (100 microg/ml) to the tissue reduced, but did not abolish, the oh8dG signal. The number of animals with positive FPGSS or oh8dG was significantly (P<0.01) higher in the FCIR group than in the sham-operated control group. We detected few FPGSS of oh8dG-positive cells in the animals treated with FCIR of 90/60. No terminal UTP nicked-end labeling (TUNEL)-positive cells, as a detection of cell death, were detected at this early reperfusion time. Our data suggest that early oxidative DNA lesions elicited by experimental stroke could be repaired. Therefore, the oxidative DNA lesions observed in the nuclear and mitochondrial DNA of the brain are different from the DNA fragmentation detected using TUNEL.  相似文献   

7.
Potosensitized formation of 8-hydroxyguanine in DNA by riboflavin was observed. A reaction mechanism involving guanine radical cation and hydration reaction was proposed. This hypothesis was confirmed by the incorporation of [18O]-atom within guanine moiety in isotopic experiments using [18O]-H2O. Photosensitized formation of oh8Gua by riboflavin was also observed in cellular DNA.  相似文献   

8.
Hypoxia-associated, acutely reduced blood oxygenation can compromise energy metabolism, alter oxidant/antioxidant balance and damage cellular components, including DNA. We show in vivo, in the rat brain that respiratory hypoxia leads to formation of the oxidative DNA lesion, 8-hydroxy-2'-deoxyguanosine (oh8dG), a biomarker for oxidative DNA damage and to increased expression of a DNA repair enzyme involved in protection of the genome from the mutagenic consequences of oh8dG. The enzyme is a homolog of the Escherichia coli MutY DNA glycosylase (MYH), which excises adenine residues misincorporated opposite the oxidized base, oh8dG. We have cloned a full-length rat MYH (rMYH) cDNA, which encodes 516 amino acids, and by in situ hybridization analysis obtained expression patterns of rMYH mRNA in hippocampal, cortical and cerebellar regions. Ensuing hypoxia, mitochondrial DNA damage was induced and rMYH expression strongly elevated. This is the first evidence for a regulated expression of a DNA repair enzyme in the context of respiratory hypoxia. Our findings support the premise that oxidative DNA damage is repaired in neurons and the possibility that the hypoxia-induced expression of a DNA repair enzyme in the brain represents an adaptive mechanism for protection of neuronal DNA from injurious consequences of disrupted energy metabolism and oxidant/antioxidant homeostasis.  相似文献   

9.
10.
NMR studies of a DNA containing 8-hydroxydeoxyguanosine.   总被引:13,自引:6,他引:7       下载免费PDF全文
The effects of hydroxylation at the C8 of a deoxyguanosine residue in DNA were studied by NMR analysis of a self-complementary dodecanucleotide, d(C1-G2-C3-oh8G4-A5-A6-T7-T8-C9-G10-C11-G12), which has an 8-hydroxy-2'-deoxyguanosine (oh8dG) residue at the 4th position. NMR data indicate that the 8-hydroxyguanine (oh8G) base takes a 6,8-diketo tautomeric form and is base-paired to C with Watson-Crick type hydrogen bonds in a B-form structure. The thermal stability of the duplex is reduced, but the overall structure is much the same as that of the unmodified d(CGCGAATTCGCG) duplex. The structural changes caused by 8-hydroxylation of the deoxyguanosine, if any, are localized near the modification site.  相似文献   

11.
12.
Mutations caused by oxidative DNA damage may contribute to human disease. A major product of that damage is 8-hydroxyguanine (oh8Gua). Because of differences in experimental design, the base pairing specificity of oh8G in vivo is not completely resolved. Here, oh8dGTP and DNA polymerase were used in two complementary bacteriophage plaque color assays to examine the mutagenic specificity of oh8Gua in vivo. The first is a reversion assay that detects all three single-base substitutions caused by misreading of guanine analogues inserted at a specific site. oh8Gua at that site gave a mutation frequency of 0.7%. Twenty-two of the 23 mutations were G----T substitutions. The second assay, a forward mutation assay, tests the mispairing potential of any altered nucleotide 1) during incorporation as substrate nucleotide, and 2) after multiple incorporations into a single-stranded DNA gap region of M13mp2. Substituting oh8dGTP for dGTP during polymerization produced 16% mutants; two classes of mutations were observed, both caused by pairing of oh8Gua with A. Seventy-six of 78 mutations were A----C substitutions, and two were G----T substitutions. These assays thus illustrate mutagenic replication of oh8Gua as template causing G----T substitutions and misincorporation of oh8Gua as substrate causing A----C substitutions, both caused by oh8Gua.A mispairs.  相似文献   

13.
The initial aim of this study was to investigate how charge and other chemical properties of some radical scavengers influence the radiation-induced formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in two model systems. The target molecule, deoxyguanosine (dG), was either organized in the DNA-helix form or present as a free nucleoside in an aerated aqueous phosphate buffer. Samples were irradiated with 137Cs gamma rays, alone or in the presence of different thiols, alcohols or ascorbate with net charges from -1 to +1. The formation of 8-oxo-dG was assayed with reverse-phase HPLC coupled to an electrochemical detector. In the absence of radical scavengers, the radiation-induced formation of 8-oxo-dG in DNA was extensive, and the ratio for formation of 8-oxo-dG was 20-fold higher for DNA compared to dG. The yields of 8-oxo-dG in DNA and dG were 7.7 x 10(-3) micromol J(-1) and 3.8 x 10(-4) micromol J(-1), respectively. Yield-dose plots showed that the efficiency of the positively charged thiol cysteamine to counteract the radiation-induced formation of 8-oxo-dG in DNA was significantly (P < 0.001) greater compared to the uncharged or negatively charged thiols. Uncharged thiols were significantly (0.001 < P < 0.05) more effective in protecting DNA compared to negatively charged thiols. In contrast to the protection against oxidative damage provided by thiols and ascorbate when they were present during irradiation of DNA, the formation of 8-oxo-dG was significantly increased when these compounds were present during irradiation of dG in solution. Compared to the irradiated control, the increase was 11- to 116-fold for thiols and ascorbate, respectively. The enhanced oxidative damage of dG observed in the presence of ascorbate or thiols suggests that secondarily formed radicals from thiols or ascorbate may react with dG, or that transformation of different primary sites of damage on dG to 8-oxo-dG is enhanced.  相似文献   

14.
The oxidative formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in DNA is closely associated with the induction of degenerative diseases, including cancer. However, the oxidant species participating in the formation of 8-OHdG has yet to be fully clarified. On the basis that peroxyl radicals are a strong candidate for this species, we employed 2,2'-azobis(2-amidinopropane) (AAPH) as a peroxyl radical generator. Exposure of calf thymus DNA to AAPH formed 8-OHdG, but the exposure of 2'-deoxyguanosine (dG) alone did not. From the exposure of various combinations of nucleotides, 8-OHdG was formed only in the presence of dG and thymidine (dT). A mix of dG with an oxidation product of dT, 5-(hydroperoxymethyl)-2'-deoxyuridine, produced 8-OHdG, but the amount formed was small. In contrast, 8-OHdG was produced abundantly by the addition of dG to peroxidized dT with AAPH. Thus, the formation of 8-OHdG was mediated by the peroxidized dT. Instead of artificial AAPH, endogenous peroxyl radicals are known to be lipid peroxides, which are probably the oxidant species for 8-OHdG formation mediated by thymidine in vivo.  相似文献   

15.
Formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) in solutions of free 2'-deoxyguanosine (dG) and calf thymus DNA (DNA) was compared for the diffusion-dependent and localised production of oxygen radicals from phosphate-mediated oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). The oxidation of Fe2+ to Fe3+ was followed at 304 nm at pH 7.2 under aerobic conditions. Given that the concentration of Fe2+ >or=phosphate concentration, the rate of Fe2+ oxidation was significantly higher in DNA-phosphate as compared for the same concentration of inorganic phosphate. Phosphate catalysed oxidation of ferrous ions in solutions of dG or DNA led through the production of reactive oxygen species to the formation of 8-oxo-dG. The yield of 8-oxo-dG in solutions of dG or DNA correlated positively with the inorganic-/DNA-phosphate concentrations as well as with the concentrations of ferrous ions added. The yield of 8-oxo-dG per unit oxidised Fe2+ were similar for dG and DNA; thus, it differed markedly from radiation-induced 8-oxo-dG, where the yield in DNA was several fold higher.For DNA in solution, the localisation of the phosphate ferrous iron complex relative to the target is an important factor for the yield of 8-oxo-dG. This was supported from the observation that the yield of 8-oxo-dG in solutions of dG was significantly increased over that in DNA only when Fe2+ was oxidised in a high excess of inorganic phosphate (50 mM) and from the lower protection of DNA damage by the radical scavenger (hydroxymethyl)aminomethane (Tris)-HCl.  相似文献   

16.
The flavan-3-ols (-)-epicatechin (epicatechin) and (+)-catechin (catechin) and their related oligomers (procyanidins) isolated from cocoa were assayed for their capacity to inhibit the UVC-mediated formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (oxo(8)dG) in calf thymus DNA. The above-mentioned compounds inhibited oxo(8)dG production in a concentration- and time-dependent manner. After 30 min of irradiation (30 kJ/m(2)), 0.1, 1.0, 10, and 100 microM epicatechin inhibited oxo(8)dG formation by 20, 36, 64, and 74%, respectively. For the same dose of UVC, 0.1, 1.0, 10, and 100 microM catechin inhibited oxo(8)dG formation by 1, 23, 50, and 70%, respectively. Epicatechin was more efficient than catechin with respect to inhibiting oxo(8)dG formation (IC(50) 1.7 +/- 0.7 vs 4.0 +/- 0.7 microM). Monomer, tetramer, and hexamer fractions were equally effective in inhibiting oxo(8)dG formation when assayed at 10 microM monomer equivalent concentration. At similar concentrations (1-50 microM), the inhibition of the UVC-mediated oxo(8)dG formation by flavan-3-ols and procyanidins was in the range of that of alpha-tocopherol, Trolox, ascorbate, and glutathione. These results support the concept that flavan-3-ols and their related procyanidins can protect DNA from oxidation at concentrations that can be physiologically relevant. Both epimerism and degree of oligomerization are important determinants of the antioxidant activity of flavan-3-ols and procyanidins.  相似文献   

17.
We have previously reported that the majority of base substitution mutations of the Escherichia coli supF gene induced by riboflavin mediated photosensitization were G:C to C:G changes, in addition to G:C to T:A changes which were probably caused by 8-hydroxyguanine (oh(8)Gua), in wild type and mutM mutator mutant strains. This implies that lesions other than oh(8)Gua are produced by riboflavin-photosensitization. G:C to C:G base substitutions have been found in the mutations induced by ionizing radiation and reactive oxygen species, as well as spontaneous mutation. To characterize the G:C to C:G mutation, riboflavin- photosensitized plasmid DNA carrying the supF gene was left at room temperature for 5 h in the dark before transfection. The delayed transfection gave a mutational spectrum different from that for immediate transfection. G:C to C:G transversions significantly increased in mutY mutator strain, in which the transversion was not detected in the immediate transfection. Lesions causing G:C to C:G changes increased during 5-h holding after photosensitization and MutY protein presumably takes part in this type of base change mutation.  相似文献   

18.
An endonuclease that specifically removes 8-hydroxyguanine (oh8Gua) from DNA has been isolated from Escherichia coli. As the amount of oh8Gua produced in DNA of X-ray-irradiated mice is known to decrease with time after irradiation, an attempt was made to find a similar activity in human polymorphonuclear neutrophils (PMNs) using a synthetic dsDNA containing oh8Gua as a substrate. The PMN enzyme was isolated free of other DNases, and found to cleave the substrate DNA simultaneously at 2 sites, the phosphodiester bonds 5' and 3' to oh8Gua, producing free hydroxyl and phosphate groups, respectively. The enzyme showed almost no activity on DNAs containing other kinds of modified base tested or mismatched DNA. Thus human cells also contain an endonuclease that specifically removes oh8Gua residues from DNA.  相似文献   

19.
Ciprofloxacin induced an increment of reactive oxygen species in sensitive strains of Staphylococcus aureus leading to oxidative stress detected by chemiluminescence while resistant strains did not suffer such stress. Oxidation of lipids was performed by employing thiobarbituric acid reaction to detect the formation of the amplified intermediate between reactive species oxygen and cytoplasmic macromolecules, namely malondialdehyde (MDA). The sensitive strain presented higher peroxidation of lipids than the resistant strain. The oxidative consequence for DNA was investigated by means of bacteria incubation with ciprofloxacin and posterior extraction of DNA, which was studied by high performance liquid chromatography (HPLC). Sensitive S. aureus ATCC 29213 showed an increase of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) respect controls without antibiotic; there was evident increase of the ratio between 8-oxodG and deoxyguanosine (dG) as a consequence of oxidation of dG to 8-oxodG considered the major DNA marker of oxidative stress. The resistant strain showed low oxidation of DNA and the analysis of 8-oxodG/dG ratio indicated lesser formation of 8-oxodG than S. aureus ATCC 29213.  相似文献   

20.
Fapy.dG is produced in DNA as a result of oxidative stress. Under some conditions Fapy.dG is formed in greater yields than 8-oxodG from a common chemical precursor. Recently, Fapy.dG and its C-nucleoside analogue were incorporated in chemically synthesized oligonucleotides at defined sites. Like 8-oxodG, Fapy.dG instructs DNA polymerase to misincorporate dA opposite it in vitro. The interactions of DNA containing Fapy.dG or the nonhydrolyzable analogue with Fpg and MutY are described. Fpg excises Fapy.dG (K(M) = 2.0 nM, k(cat) = 0.14 min(-1)) opposite dC approximately 17-fold more efficiently than when mispaired with dA, which is misinserted by DNA polymerase in vitro. Fpg also prefers to bind duplexes containing Fapy.dG.dC or beta-C-Fapy.dG.dC compared to those in which the lesion is opposite dA. MutY incises dA when it is opposite Fapy.dG and strongly binds duplexes containing the lesion or beta-C-Fapy.dG. Incision from Fapy.dG.dA is faster than from dG.dA mispairs but slower than from DNA containing 8-oxodG opposite dA. These data demonstrate that Fapy.dG closely resembles the interactions of 8-oxodG with two members of the GO repair pathway in vitro. The similar effects of Fapy.dG and 8-oxodG on DNA polymerase and repair enzymes in vitro raise the question as to whether Fapy.dG elicits similar effects in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号