首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.  相似文献   

2.
In the present work, DNA was extracted from 63 skeletal samples recovered at the Neolithic site of San Juan ante Portam Latinam (SJAPL) (Araba, Basque Country). These samples have proved useful as genetic material for the performance of population studies. To achieve this it was necessary to overcome the methodological problems arising when working with damaged DNA molecules. We succeeded in performing an amplification and restriction analysis of the polymorphisms present in the mtDNA. Ninety seven percent of the samples were classified as belonging to one of the nine mtDNA haplogroups described in Caucasians. This work shows that restriction analysis is a useful methodological tool to perform reliable population genetic analysis on archaeological remains. Tha analysis of ancient and modern haplogroup distribution can shed more light on the genetic evolution of human populations. Moreover, a more exhaustive data on prehistoric populations will allow to build stronger hypothesis on the genetic relationships among human populations.  相似文献   

3.
4.
Ancient plant DNA: review and prospects   总被引:1,自引:0,他引:1  
Ancient DNA has received much attention since the mid-1980s, when the first sequence of an extinct animal species was recovered from a museum specimen. Since then, the majority of ancient DNA studies have focused predominantly on animal species, while studies in plant palaeogenetics have been rather limited, with the notable exception of cultivated species found in archaeological sites. Here, we outline the recent developments in the analysis of plant ancient DNA. We emphasize the trend from species identification to population-level investigation and highlight the potential and the difficulties in this field, related to DNA preservation and to risks of contamination. Further efforts towards the analysis of ancient DNA from the abundant store of fossil plant remains should provide new research opportunities in palaeoecology and phylogeography. In particular, intraspecific variation should be considered not only in cultivated plants but also in wild taxa if palaeogenetics is to become a fully emancipated field of plant research.  相似文献   

5.
6.
Detecting past population bottlenecks using temporal genetic data   总被引:1,自引:0,他引:1  
Population bottlenecks wield a powerful influence on the evolution of species and populations by reducing the repertoire of responses available for stochastic environmental events. Although modern contractions of wild populations due to human-related impacts have been documented globally, discerning historic bottlenecks for all but the most recent and severe events remains a serious challenge. Genetic samples dating to different points in time may provide a solution in some cases. We conducted serial coalescent simulations to assess the extent to which temporal genetic data are informative regarding population bottlenecks. These simulations demonstrated that the power to reject a constant population size hypothesis using both ancient and modern genetic data is almost always higher than that based solely on modern data. The difference in power between the modern and temporal DNA approaches depends significantly on effective population size and bottleneck intensity and less significantly on sample size. The temporal approach provides more power in cases of genetic recovery (via migration) from a bottleneck than in cases of demographic recovery (via population growth). Choice of genetic region is critical, as mutation rate heavily influences the extent to which temporal sampling yields novel information regarding the demographic history of populations.  相似文献   

7.
Pollen plays important roles in the reproduction and gene flow of flowering plants, and its haploid DNA sequence provides useful information for studies of plant evolution and genealogy. We describe a new method for multiple microsatellite genotyping and DNA sequencing from a single pollen grain. The haploid DNA was extracted from a single pollen grain by using a simple DNA extraction method, and multiple microsatellite genotypes and DNA sequences of multiple chloroplast loci were determined. Using nine pairs of microsatellite primers, more than 90% of genotypes were successfully determined, and 71% and 100% of DNA sequences were determined at two chloroplast DNA loci, the trnL intron region and the trnL/trnF intergenic spacer region, respectively. This simple method of genetic analysis for a single pollen grain will facilitate detailed study of pollination, evolution and genealogy.  相似文献   

8.
9.
The effect of genotype, the origin of genotype, and germination temperature on Scots pine pollen grain size, hydration rate, germinability, and tube growth was studied in vitro. The mean sizes of dry and germinated pollen grains varied among pollen genotypes in different ways, thus the hydration rate varied among genotypes. Pollen from Scots pine that originates in northern Finland hydrated more than pollen from a population in southern Finland. Germination temperature had no effect on the hydration rate. Germinability and tube growth rate of northern genotypes were higher at 20 °C than at 15 °C. Differences among southern genotypes were not significant. At 15 °C, the germinability and pollen tube growth rate of northern genotypes were lower than southern genotypes. At 20 °C, the differences were not significant. It appears that germination and growth of pollen from northern populations are enhanced at higher temperatures whereas pollen from southern populations is unaffected.  相似文献   

10.
The Neolithic transition has been widely debated particularly regarding the extent to which this revolution implied a demographic expansion from the Near East. We attempted to shed some light on this process in northeastern Iberia by combining ancient DNA (aDNA) data from Early Neolithic settlers and published DNA data from Middle Neolithic and modern samples from the same region. We successfully extracted and amplified mitochondrial DNA from 13 human specimens, found at three archaeological sites dated back to the Cardial culture in the Early Neolithic (Can Sadurní and Chaves) and to the Late Early Neolithic (Sant Pau del Camp). We found that haplogroups with a low frequency in modern populations-N* and X1-are found at higher frequencies in our Early Neolithic population (~31%). Genetic differentiation between Early and Middle Neolithic populations was significant (F(ST) ~0.13, P<10(-5)), suggesting that genetic drift played an important role at this time. To improve our understanding of the Neolithic demographic processes, we used a Bayesian coalescence-based simulation approach to identify the most likely of three demographic scenarios that might explain the genetic data. The three scenarios were chosen to reflect archaeological knowledge and previous genetic studies using similar inferential approaches. We found that models that ignore population structure, as previously used in aDNA studies, are unlikely to explain the data. Our results are compatible with a pioneer colonization of northeastern Iberia at the Early Neolithic characterized by the arrival of small genetically distinctive groups, showing cultural and genetic connections with the Near East.  相似文献   

11.
12.
Deep-sea subsurface sediments are the most important archives of marine biodiversity. Until now, these archives were studied mainly using the microfossil record, disregarding large amounts of DNA accumulated on the deep-sea floor. Accessing ancient DNA (aDNA) molecules preserved down-core would offer unique insights into the history of marine biodiversity, including both fossilized and non-fossilized taxa. Here, we recover aDNA of eukaryotic origin across four cores collected at abyssal depths in the South Atlantic, in up to 32.5 thousand-year-old sediment layers. Our study focuses on Foraminifera and Radiolaria, two major groups of marine microfossils also comprising diverse non-fossilized taxa. We describe their assemblages in down-core sediment layers applying both micropalaeontological and environmental DNA sequencing approaches. Short fragments of the foraminiferal and radiolarian small subunit rRNA gene recovered from sedimentary DNA extracts provide evidence that eukaryotic aDNA is preserved in deep-sea sediments encompassing the last glacial maximum. Most aDNA were assigned to non-fossilized taxa that also dominate in molecular studies of modern environments. Our study reveals the potential of aDNA to better document the evolution of past marine ecosystems and opens new horizons for the development of deep-sea palaeogenomics.  相似文献   

13.
The geographical structure of mitochondrial (mt)DNA variants (mitotypes) was investigated in 38 western European populations of Scots pine Pinus sylvestris using restriction fragment length polymorphism (RFLP) analysis of total DNA and a homologous cox1 probe. Three major mitotypes (designated a, b and d ) were detected. Within Spain all three major mitotypes were found, gene diversity was high, HT = 0.586, and this diversity was distributed predominantly among rather than within populations (FST(M) = 0.813 for the seven Spanish populations). Mitotype d was present only in the most southerly population from the Sierra Nevada . Elsewhere in Europe, populations showed little or no mtDNA diversity within regions, but there were marked differences between regions. Italian populations were fixed for mitotype b ; populations from northern France, Germany, Poland, Russia and southern Sweden were fixed for mitotype a ; while populations in northern Fennoscandia were fixed for mitotype b . The isolated Scottish populations were predominantly of mitotype a , but mitotype b was present in three of the 20 populations scored. In Scotland, UK gene diversity (HT = 0.120) and genetic differentiation among populations (FST(M) = 0.37) was much lower than in Spain. When interpreted in the light of complementary data from pollen analysis and nuclear genetic markers, the results suggest that present-day populations of P. sylvestris in western Europe have been derived from at least three different sources after glaciation.  相似文献   

14.
We compared DNA, pollen and macrofossil data obtained from Weichselian interstadial (age more than 40 kyr) and Holocene (maximum age 8400 cal yr BP) peat sediments from northern Europe and used them to reconstruct contemporary floristic compositions at two sites. The majority of the samples provided plant DNA sequences of good quality with success amplification rates depending on age. DNA and sequencing analysis provided five plant taxa from the older site and nine taxa from the younger site, corresponding to 7% and 15% of the total number of taxa identified by the three proxies together. At both sites, pollen analysis detected the largest (54) and DNA the lowest (10) number of taxa, but five of the DNA taxa were not detected by pollen and macrofossils. The finding of a larger overlap between DNA and pollen than between DNA and macrofossils proxies seems to go against our previous suggestion based on lacustrine sediments that DNA originates principally from plant tissues and less from pollen. At both sites, we also detected Quercus spp. DNA, but few pollen grains were found in the record, and these are normally interpreted as long-distance dispersal. We confirm that in palaeoecological investigations, sedimentary DNA analysis is less comprehensive than classical morphological analysis, but is a complementary and important tool to obtain a more complete picture of past flora.  相似文献   

15.
Knowledge of genetic connectivity dynamics in the world's large‐bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top‐down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (= 380) and sequences from the mitochondrial control region (CR,= 340) and cytochrome oxidase I gene (= 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo‐Pacific ocean basins (microsatellite FST > 0.129; CR ΦST > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex‐biased gene flow. Coalescent‐ and genetic distance‐based estimates of divergence from CR sequences were largely congruent (dcorr = 0.0015–0.0050), indicating a separation of Indo‐Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller‐than‐anticipated spatial scales.  相似文献   

16.
The role of past climatic change in shaping the distributions of tropical rain forest vertebrates is central to long-standing hypotheses about the legacy of the Quaternary ice ages. One approach to testing such hypotheses is to use genetic data to infer the demographic history of codistributed species. Population genetic theory that relates the structure of allelic genealogies to historical changes in effective population size can be used to detect a past history of demographic expansion or contraction. The fruit bats Cynopterus sphinx and C. brachyotis (Chiroptera: Pteropodidae) exhibit markedly different distribution patterns across the Indomalayan region and therefore represent an exemplary species pair to use for such tests. The purpose of this study was to test alternative hypotheses about historical patterns of demographic expansion and contraction in C. sphinx and C. brachyotis using a coalescent-based analysis of microsatellite variation. Specifically, we used a hierarchical Bayesian model based on Markov chain Monte Carlo simulations to estimate the posterior distribution of genealogical and demographic parameters. The results revealed strong evidence for population contraction in both species. Evidence for a population contraction in C. brachyotis was expected on the basis of biogeographic considerations. However, similar evidence for population contraction in C. sphinx does not support the hypothesis that this species underwent a pronounced range expansion during the late Quaternary. Genetic evidence for population decline may reflect the consequences of habitat destruction on a more recent time scale.  相似文献   

17.
Recent paleogenetic studies have confirmed that the spread of the Neolithic across Europe was neither genetically nor geographically uniform. To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR‐I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long‐distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
In AD 1428, the city‐states of Tenochtitlan, Texcoco, and Tlacopan formed the Triple Alliance, laying the foundations of the Aztec empire. Although it is well documented that the Aztecs annexed numerous polities in the Basin of Mexico over the following years, the demographic consequences of this expansion remain unclear. At the city‐state capital of Xaltocan, 16th century documents suggest that the site's conquest and subsequent incorporation into the Aztec empire led to a replacement of the original Otomí population, whereas archaeological evidence suggests that some of the original population may have remained at the town under Aztec rule. To help address questions about Xaltocan's demographic history during this period, we analyzed ancient DNA from 25 individuals recovered from three houses rebuilt over time and occupied between AD 1240 and 1521. These individuals were divided into two temporal groups that predate and postdate the site's conquest. We determined the mitochondrial DNA haplogroup of each individual and identified haplotypes based on 372 base pair sequences of first hypervariable region. Our results indicate that the residents of these houses before and after the Aztec conquest have distinct haplotypes that are not closely related, and the mitochondrial compositions of the temporal groups are statistically different. Altogether, these results suggest that the matrilines present in the households were replaced following the Aztec conquest. This study therefore indicates that the Aztec expansion may have been associated with significant demographic and genetic changes within Xaltocan. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
A spatio-temporal study of genetic variation in the Danish pine marten ( Martes martes ) populations from the Jutland peninsula and from the island of Sealand was performed using 11 microsatellite markers. Samples obtained from 1892 to 2003 were subdivided into historical (prior to 1970) and recent (from 1970) groups. As compared with the historical samples, there was a significant loss of genetic variation in the recent Jutland population, but not in Sealand. Effective population sizes were estimated using Bayesian-based software (TMVP). Historical effective population sizes were 5897 (90% highest probability density, HPD, limits: 1502–6849) in Jutland and 1300 (90% HPD limits: 224–5929) in Sealand, whereas recent effective population sizes were 14.7 (90% HPD limits: 10.9–23.5) in Jutland and 802 (90% HPD limits: 51.8–5510) in Sealand. Significant genetic differentiation ( F ST) was found between the two historical samples, between the two recent samples, and between the historical and the recent sample in Jutland; whereas the F ST value between the historical and the recent sample in Sealand was not significant. The significant genetic differentiation between the historical and the recent samples indicates changes in the genetic compositions over time, and the higher F ST values between the two recent samples, as compared with the two historical samples, indicates that the populations in Sealand and Jutland have drifted apart within a short time span. No deviation from Hardy–Weinberg equilibrium was found within populations, indicating no further substructuring.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 93 , 457–464.  相似文献   

20.
We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity was high and inbreeding low. When comparing these populations, there is a significant, but small (less than 1%), genetic divergence between populations. Spatial distance between populations or timber harvest at the second growth site were reasonable explanations for the observed minor differences in allele frequencies between populations. Spatial autocorrelation analysis suggested that, for the old growth population, weak positive structuring at 15 m fits the isolation by distance model for a neighbourhood size of about 100 individuals. In comparison, genotypes were randomly distributed in the second growth population. Thus, logging may have decreased spatial structuring at the second growth site, suggesting that management practices may be used to alter natural spatial patterns. In addition, the amount of autocorrelation in the old growth population appears to be lower for some of the microsatellites, suggesting higher numbers of rare alleles and that higher mutation rates may have directly affected spatial statistics by reducing structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号