首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both A1 and A2a Purine Receptors Regulate Striatal Acetylcholine Release   总被引:2,自引:2,他引:0  
The receptors responsible for the adenosine-mediated control of acetylcholine release from immunoaffinity-purified rat striatal cholinergic nerve terminals have been characterized. The relative affinities of three analogues for the inhibitory receptor were (R)-phenylisopropyladenosine greater than cyclohexyladenosine greater than N-ethylcarboxamidoadenosine (NECA), with binding being dependent of the presence of Mg2+ and inhibited by 5'-guanylylimidodiphosphate [Gpp(NH)p] and adenosine receptor antagonists. Adenosine A1 receptor agonists inhibited forskolin-stimulated cholinergic adenylate cyclase activity, with an IC50 of 0.5 nM for (R)-phenylisopropyladenosine and 500 nM for (S)-phenylisopropyladenosine. A1 agonists inhibited acetylcholine release at concentrations approximately 10% of those required to inhibit the cholinergic adenylate cyclase. High concentrations (1 microM) of adenosine A1 agonists were less effective in inhibiting both adenylate cyclase and acetylcholine release, due to the presence of a lower affinity stimulatory A2 receptor. Blockade of the A1 receptor with 8-cyclopentyl-1,3-dipropylxanthine revealed a half-maximal stimulation by NECA of the adenylate cyclase at 10 nM, and of acetylcholine release at approximately 100 nM. NECA-stimulated adenylate cyclase activity copurified with choline acetyltransferase in the preparation of the cholinergic nerve terminals, suggesting that the striatal A2 receptor is localized to cholinergic neurones. The possible role of feedback inhibitory and stimulatory receptors on cholinergic nerve terminals is discussed.  相似文献   

2.
Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A(2A), A(2B), and A(3) adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A(3) receptors could induce mast cell histamine release in association with increases in intracellular Ca(2+) that were mediated through G(i) and phosphoinositide 3-kinase signaling pathways. The function of A(3) receptors in vivo was tested by exposing mice to the A(3) receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A(3) receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A(3) receptors. These results demonstrate that the A(3) adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.  相似文献   

3.
Min HW  Moochhala S  Eng KH 《Life sciences》2000,66(19):1781-1793
Adenosine and its receptor agonists enhanced the production of nitric oxide (NO) in lipopolysaccharide (LPS)-treated RAW 264.7 cells. The enhancement of LPS-induced NO production by adenosine, as represented by the amount of its oxidation products, nitrite and nitrate, was inhibited by adenosine uptake inhibitors, such as dipyridamole, S(4-nitrobenzyl)-6-thioinosine (NBTI) and S(4-nitrobenzyl)-6-thioguanosine (NBTG). These indicate that the uptake of adenosine by macrophages is a prerequisite for the enhancement effects observed. A downstream metabolite of adenosine, inosine, also potentiated the LPS-induced NO production in a dose-dependent manner while its enhancement effect was also inhibited by dipyridamole. However, the degree of enhancement by inosine on NO production and nitric oxide synthase (NOS) activity in LPS-treated RAW 264.7 was weaker than the effect of adenosine. Furthermore, adenosine agonists also enhanced the NO production in a dose-dependent manner, but were not specific for A1, A2 nor A3 adenosine receptor. Adenosine uptake inhibitors had no effects on the enhancement activity of the adenosine receptor agonists. Thus, extracellular receptor/s may also play an important role in the observed enhancement responses. The results of this study indicate that the enhancement effects of adenosine on NO production in macrophages could be mediated by the extracellular adenosine receptors as well as the downstream metabolites of adenosine.  相似文献   

4.
Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells. The kinetics of adenosine-mediated neuritogenesis was faster than that triggered by retinoic acid. The triggering of the expression of TrkB neurotrophin receptor and the increase of cell number in the G1 phase by the activation of adenosine receptors suggest that adenosine may participate in early steps of neuronal differentiation. Furthermore, protein kinase C (PKC) and extracellular regulated kinase-1/2 (ERK-1/2) are involved in the A1R- and A(2A)R-mediated effects. Inhibition of protein kinase A (PKA) activity results in a total inhibition of neurite outgrowth induced by A(2A)R agonists but not by A1R agonists. PKA activation is therefore necessary for A(2A)R-mediated neuritogenesis. Co-stimulation does not lead to synergistic effects thus indicating that the neuritogenic effects of adenosine are mediated by either A1 or A(2A) receptors depending upon the concentration of the nucleoside. These results are relevant to understand the mechanisms by which adenosine receptors modulate neuronal differentiation and open new perspectives for considering the use of adenosine agonists as therapeutic agents in diseases requiring neuronal repair.  相似文献   

5.
The effects of adenosine agonists on human neutrophil function   总被引:7,自引:0,他引:7  
Adenosine is a potent physiologic substance with a variety of biologic activities. Many of the effects of adenosine appear to be mediated by two populations of cell-surface adenosine receptors (A1 and A2). We have examined the effects of several adenosine receptor agonists on human neutrophils stimulated with the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP). The results indicate that both superoxide anion generation and degranulation (as assessed by lysozyme release) are inhibited. Inhibition correlated most strongly with A2 receptor affinity for both parameters and was reversible by the adenosine receptor antagonist 8-phenyltheophylline. Because toxic oxygen metabolites and degradative enzymes are implicated in a variety of inflammatory disorders, adenosine agonists may be useful probes to help expand our knowledge of the role of these mediators in human disease.  相似文献   

6.
Modulatory Role of Adenosine Receptors in Insect Motor Nerve Terminals   总被引:1,自引:0,他引:1  
The effects of adenosine and ATP were studied on blowfly larvae Calliphora vicina neuromuscular preparation. Adenosine diminished (IC50 = 40 ± 3 M) the amplitude of nerve-evoked postsynaptic currents (EPSCs) and slightly decreased the frequency of spontaneous currents without affecting their amplitude. EPSCs were slightly reduced by ATP, and this effect was prevented by concanavalin A. Presynaptic inhibition by adenosine was temperature-dependent and insensitive to pertussis toxin. A1 agonists of vertebrate adenosine receptor CPA and NECA failed to reproduce the effect of adenosine, and 2-CADO enhanced the EPSCs. A1 antagonist DPCPX competitively inhibited adenosine action. A2 agonist DPMA potentiated EPSCs, and its effect was abolished by A2 antagonist DMPX. Adenosine and ATP failed to affect the nonquantal release of glutamate. The results show for the first time the presence of presynaptic adenosine receptors regulating transmitter release at insect motor nerve terminals and point to differences in pharmacological properties of adenosine receptor subtypes in insects and vertebrates.  相似文献   

7.
PC12 cells, a rat pheochromocytoma cell line, has been reported to release norepinephrine in response to extracellular ATP in the presence of extracellular Ca2+. The potency order of ATP analogues was adenosine 5'-O-(3-thiotriphosphate) greater than ATP greater than adenosine 5'-O-(1-thiotriphosphate) = 2-methylthioadenosine 5'-triphosphate (MeSATP) greater than 2'- and 3'-O-(4-benzoyl-benzoyl)ATP (BzATP) greater than ADP greater than 5-adenylylimidodiphosphate. Adenosine 5'-O-(2-thiodiphosphate), beta, gamma-methyleneadenosine 5'-triphosphate, AMP and adenosine were inactive. The ATP action in the absence of extracellular Ca2+, suggests a small but appreciable contribution of intracellular Ca2+ mobilization, for norepinephrine release. However, for some ATP derivatives, like BzATP, almost no contribution of the phospholipase C-Ca2+ pathway is suggested, based on their low activity in inositol phosphates production. To identify the ATP-receptor protein, PC12 cell membranes were photoaffinity-labeled with [32P]BzATP. SDS-PAGE analysis showed that a 53-kDa protein labeling was inhibited by ATP and its derivatives, as well as by P2-antagonists, suramin and reactive blue 2, which inhibit the nucleotide-induced norepinephrine release. The inhibitory activity of the nucleotides was, in parallel with their potency, to induce norepinephrine release. Despite their inability to release norepinephrine, GTP and GTP gamma S inhibited the BzATP labeling, suggesting the participation of a putative G protein in the ATP-receptor-mediated actions. We suggest that the 53-kDa protein on the PC12 cell surface is an ATP receptor, which mediates the norepinephrine release, depending, mainly, on extracellular Ca2+ gating.  相似文献   

8.
Adenosine is generated at sites of tissue injury where it serves to regulate inflammation and damage. Adenosine signaling has been implicated in the regulation of pulmonary inflammation and damage in diseases such as asthma and chronic obstructive pulmonary disease; however, the contribution of specific adenosine receptors to key immunoregulatory processes in these diseases is still unclear. Mice deficient in the purine catabolic enzyme adenosine deaminase (ADA) develop pulmonary inflammation and mucous metaplasia in association with adenosine elevations making them a useful model for assessing the contribution of specific adenosine receptors to adenosine-mediated pulmonary disease. Studies suggest that the A(2A) adenosine receptor (A(2A)R) functions to limit inflammation and promote tissue protection; however, the contribution of A(2A)R signaling has not been examined in the ADA-deficient model of adenosine-mediated lung inflammation. The purpose of the current study was to examine the contribution of A(2A)R signaling to the pulmonary phenotype seen in ADA-deficient mice. This was accomplished by generating ADA/A(2A)R double knockout mice. Genetic removal of the A(2A)R from ADA-deficient mice resulted in enhanced inflammation comprised largely of macrophages and neutrophils, mucin production in the bronchial airways, and angiogenesis, relative to that seen in the lungs of ADA-deficient mice with the A(2A)R. In addition, levels of the chemokines monocyte chemoattractant protein-1 and CXCL1 were elevated, whereas levels of cytokines such as TNF-alpha and IL-6 were not. There were no compensatory changes in the other adenosine receptors in the lungs of ADA/A(2A)R double knockout mice. These findings suggest that the A(2A)R plays a protective role in the ADA-deficient model of pulmonary inflammation.  相似文献   

9.
Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. By contrast, the efficacy of adenosine and adenosine receptor agonists in treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A(1) receptor-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A(2A) receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine.  相似文献   

10.
Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163? subset of monocytes compared to the CD163+ subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.  相似文献   

11.
The contribution of neuronal ATP to interstitial adenosine levels was investigated in isolated perfused rat hearts. Ventricular surface transudates, representing interstitial fluid, were analyzed for norepinephrine, ATP, and adenosine. Exocytotic release of norepinephrine was induced by electrical stimulation of cardiac efferents emanating from the stellate ganglion. Ganglion stimulation increased contractility, interstitial norepinephrine, ATP, and adenosine. Interstitial adenosine was 11- to 27-fold higher than interstitial ATP, suggesting that the released ATP is unlikely the only source of adenosine. In the presence of AOPCP (alpha,beta-methyleneadenosine 5'-diphosphate), an ecto-5'-nucleotidase inhibitor, the ganglion-stimulated increase in interstitial ATP and adenosine reached levels similar to those in the absence of AOPCP, also suggesting that adenosine does not derive from extracellular ATP. The perfusate Ca2+ was raised from 1 to 4 mM to determine the importance of the enhanced contractile function on the levels of norepinephrine, ATP, and adenosine. The results were increases in contractility and interstitial norepinephrine, ATP, and adenosine, which were not suppressed with atenolol, indicating a norepinephrine-independent release of ATP and adenosine. Reserpine treatment and administration of guanethidine depleted the catecholamine stores and diminished the catecholamine release, respectively. However, neither agent altered Ca2+-induced increases in ATP and adenosine. It is concluded that the amount of neuronal-derived ATP is low and most likely does not contribute significantly to interstitial levels of adenosine. Furthermore, elevations in interstitial norepinephrine, ATP, and adenosine are associated with neuronal-independent increases in contractile function.  相似文献   

12.
Li XX  Nomura T  Aihara H  Nishizaki T 《Life sciences》2001,68(12):1343-1350
The present study investigated the effect of adenosine on glial glutamate efflux. Adenosine (from 1 nM to 100 microM) enhanced the release from cultured rat glial cells in a bell-shaped dose-responsive manner for the hippocampus and in a dose-dependent manner for the superior colliculus, and a similar increase was obtained with the A2a adenosine receptor agonist, 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS21680), but not with the A1 adenosine receptor agonist, N6-cyclohexyladenosine (CHA). Adenosine and CGS21680 also enhanced glutamate efflux from Xenopus oocytes injected with the poly (A)+ mRNAs derived from cultured glial cells for the hippocampus and the superior colliculus together with and without the A2a adenosine receptor mRNA, but instead such increase was not found in oocytes expressing A2a adenosine receptors alone. The results of the present study thus suggest that adenosine enhances glutamate efflux from glial cells via A2a adenosine receptors, and this may represent a mechanism underlying the facilitatory action of adenosine on hippocampal and superior colliculus neurotransmissions.  相似文献   

13.
The effect of adenosine and related compounds on the proliferation of cultured TM4 cells, a Sertoli-like cell line, has been examined. Adenosine, as well as A1 and A2 adenosine receptor agonists (cyclohexyladenosine and N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine) inhibited cell proliferation. These effects were prevented by 8-cyclopentyl theophylline, 1,3-dimethyl-propargylxanthine and caffeine, antagonists at the A1, A2 and both receptors, respectively. The xanthines had no effect by themselves and, consistent with this, the bathing medium was found not to contain detectable levels of adenosine. It is concluded that TM4 cell proliferation can be regulated by receptors for adenosine.  相似文献   

14.
Adenosine and adenosine receptor agonists have a variety of inhibitory effects on the generation of inflammatory mediators by neutrophils and other cell types. In human neutrophils stimulated with the chemotactic peptide FMLP, adenosine agonists inhibit O2- generation and degranulation. Because these findings suggest that the agonists may have potential as antiinflammatory agents, several compounds were evaluated for effects on the exudative and cellular phases of carrageenan-induced pleural inflammation in rats. All of the agonists tested inhibited both parameters of the inflammatory response. Inhibition appeared to correlate better with binding to the A1 than to the A2 receptor and was reversible by a known adenosine receptor antagonist, 8-phenyltheophylline. In mechanistic studies, R-N-(1-methyl-2-phenylethyl)adenosine, a standard A1 selective agonist, reversed the drop in circulating neutrophil count that occurs after injection of carrageenan. These results suggest that the agonists may prevent cell emigration by inhibiting adhesion to the endothelium or diapedesis. In addition (R)-N-(1-methyl-2-phenylethyl)adenosine had weak inhibitory effects on superoxide production by FMLP-stimulated rat neutrophils. Control studies showed that the effects of the agonists were not the result of agonist-induced hypotension nor corticosterone production by the adrenal glands. These findings indicate that adenosine receptor agonists are effective new pharmacologic tools for the study of inflammatory processes.  相似文献   

15.
The effects of purinergic agonists on insulin release are controversial in the literature. In our studies (mainly using INS-1 cells, but also using rat pancreatic islets), ATP had a dual effect on insulin release depending on the ATP concentration: increasing insulin release (EC50 approximately/= 0.0032 microM) and inhibiting insulin release (EC50 approximately/= 0.32 microM) at both 5.6 and 8.3 mM glucose. This is compatible with the view that either two different receptors are involved, or the cells desensitize and (or) the effect of an inhibitory degradation product such as adenosine (ectonucleotidase effect) emerges. The same dual effects of ATP on insulin release were obtained using rat pancreatic islets instead of INS-1 cells. ADPbetaS, which is less degradable than ATP and rather specific for P2Y1 receptors, had a dual effect on insulin release at 8.3 mM glucose: stimulatory (EC50 approximately/= 0.02 microM) and inhibitory (EC50 approximately/= 0.32 microM). The effectiveness of this compound indicates the possible involvement of a P2Y1 receptor. 2-Methylthio-ATP exhibited an insulinotropic effect at very high concentrations (EC50 approximately/= 15 microM at 8.3 mM glucose). This indicated that distinct P2X or the P2Y1 receptor may be involved in these insulin-secreting cells. UTP increased insulin release (EC50 approximately/= 2 microM) very weakly, indicating that a P2U receptor (P2X3 or possibly a P2Y2 or P2Y4) are not likely to be involved. Suramin (50 microM) antagonized the insulinotropic effect of ATP (0.01 microM) and UTP (0.32 microM). Since suramin is not selective, the data indicated that various P2X and P2Y receptors may be involved. PPADS (100 microM), a P2X and P2Y1,4,6 receptor antagonist, was ineffective using either low or high concentrations of ATP and ADPbetaS, which combined with the suramin data hints at a P2Y receptor effect of the compounds. Adenosine inhibited insulin release in a concentration-dependent manner. DPCPX (100 microM), an adenosine (A1) receptor antagonist, inhibited the inhibitory effects of both adenosine and of high concentrations of ATP. Adenosine deaminase (1 U/mL) abolished the inhibitory effect of high ATP concentrations, indicating the involvement of the degradation product adenosine. Repetitive addition of ATP did not desensitize the stimulatory effect of ATP. U-73122 (2 microM), a PLC inhibitor, abolished the ATP effect at low concentrations. The data indicate that ATP at low concentrations is effective via P2Y receptors and the PLC-system and not via P2X receptors; it inhibits insulin release at high concentrations by being metabolized to adenosine.  相似文献   

16.
Abstract: Using microdialysis in the hippocampus of anaesthetised rats, the concentration of extracellular adenosine was estimated to be 0.8 µ M . Kainic acid (0.1–25 m M ) in the perfusate evoked a concentration-dependent release of adenosine with an EC50 of 940 µ M . Two 5-min pulses of 1 m M kainic acid in the perfusate increased the dialysate levels with an S2/S1 ratio of 0.52 ± 0.03. Kainate-evoked release of adenosine was reduced significantly by 10 µ M tetrodotoxin and by a κ-receptor agonist, U50,488H (100 µ M ). The S2/S1 ratio was reduced by 4.5 µ M 6-cyano-7-nitroquinoxaline-2,3-dione, a non-NMDA receptor antagonist, but not by the NMDA receptor blockers (+)-MK-801 (dizocilpine; 100 µ M ) or (±)-2-amino-5-phosphonopentanoic acid (1 m M ), indicating a non-NMDA receptor-mediated process. The S2/S1 ratio was also reduced significantly by 10 m M ascorbic acid, 10 m M glutathione (a scavenger of hydroperoxides), and 1 m M oxypurinol (a xanthine oxidase inhibitor), indicating the possible involvement of free radicals. Neither the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (100 µ M ) nor the A1 adenosine receptor agonist R (−)- N 6-(2-phenylisopropyl)adenosine (100 µ M ) affected release. Adenosine release evoked by kainic acid is therefore mediated by activation of non-NMDA receptors and may involve the propagation of action potentials and the production of free radicals.  相似文献   

17.
The adenosinergic modulation of GABAergic spontaneous miniature inhibitory postsynaptic currents (mIPSCs) was investigated in mechanically dissociated rat tuberomammillary nucleus (TMN) neurons using a conventional whole-cell patch clamp technique. Adenosine (100 microM) reversibly decreased mIPSC frequency without affecting the current amplitude, indicating that adenosine acts presynaptically to decrease the probability of spontaneous GABA release. The adenosine action on GABAergic mIPSC frequency was completely blocked by 1 microM DPCPX, a selective A(1) receptor antagonist, and mimicked by 1 microM CPA, a selective A(1) receptor agonist. This suggests that presynaptic A(1) receptors were responsible for the adenosine-mediated inhibition of GABAergic mIPSC frequency. CPA still decreased GABAergic mIPSC frequency even either in the presence of 200 microM Cd(2+), a general voltage-dependent Ca(2+) channel blocker, or in the Ca(2+)-free external solution. However, the inhibitory effect of CPA on GABAergic mIPSC frequency was completely occluded by 1 mM Ba(2+), a G-protein coupled inwardly rectifying K(+) (GIRK) channel blocker. In addition, the CPA-induced decrease in mIPSC frequency was completely occluded by either 100 microM SQ22536, an adenylyl cyclase (AC) inhibitor, or 1 muM KT5720, a specific protein kinase A (PKA) inhibitor. The results suggest that the activation of presynaptic A(1) receptors decreases spontaneous GABAergic transmission onto TMN neurons via the modulation of GIRK channels as well as the AC/cAMP/PKA signal transduction pathway. This adenosine A(1) receptor-mediated modulation of GABAergic transmission onto TMN neurons may play an important role in the fine modulation of the excitability of TMN histaminergic neurons as well as the regulation of sleep-wakefulness.  相似文献   

18.
The effect of adenosine and its analogues on the cytotoxic activity of IL-2-activated NK cells was investigated. Adenosine is an endogenous ligand for four different adenosine receptor (AdoR) subtypes (AdoRA1, AdoRA2A, AdoRA2B, and AdoRA3). Increased concentrations of adenosine were found in ascites of MethA sarcoma or in culture medium of 3LL Lewis lung carcinoma growing under hypoxic conditions. We hypothesize that intratumor adenosine impairs the ability of lymphokine-activated killer (LAK) cells to kill tumor cells. The effect of AdoR engagement on LAK cells cytotoxic activity was analyzed using AdoR agonists and antagonists as well as LAK cells generated from AdoR knockout mice. Adenosine and its analogues efficiently inhibited the cytotoxic activity of LAK cells. CGS21680 (AdoRA2A agonist) and 5-N-ethylcarboxamide adenosine (NECA) (AdoRA2A/ADoRA2B agonist) inhibited LAK cell cytotoxicity in parallel with their ability to increase cAMP production. The inhibitory effects of stable adenosine analog 2-chloroadenosine (CADO) and AdoRA2 agonists were blocked by AdoRA2 antagonist ZM 241385. Adenosine and its analogues impair LAK cell function by interfering with both perforin-mediated and Fas ligand-mediated killing pathways. Studies with LAK cells generated from AdoRA1-/- and AdoRA3-/- mice ruled out any involvement of these AdoRs in the inhibitory effects of adenosine. LAK cells with genetically disrupted AdoRA2A were resistant to the inhibitory effects of adenosine, CADO and NECA. However, with extremely high concentrations of CADO or NECA, mild inhibition of LAK cytotoxicity was observed that was probably mediated via AdoRA2B signaling. Thus, by using pharmacological and genetic blockage of AdoRs, our results clearly indicate the prime importance of cAMP elevating AdoR2A in the inhibitory effect of adenosine on LAK cell cytotoxicity. The elevated intratumor levels of adenosine might inhibit the antitumor effects of activated NK cells.  相似文献   

19.
Sun L  Li DL  Zhao M  He X  Yu XJ  Miao Y  Wang H  Ren J  Zang WJ 《PloS one》2011,6(11):e25618
Adenosine, a catabolite of ATP, displays a wide variety of effects in the heart including regulation of cardiac response to myocardial ischemia and reperfusion injury. Nonetheless, the precise mechanism of adenosine-induced cardioprotection is still elusive. Isolated Sprague-Dawley rat hearts underwent 30 min global ischemia and 120 min reperfusion using a Langendorff apparatus. Both adenosine and acetylcholine treatment recovered the post-reperfusion cardiac function associated with adenosine and muscarinic receptors activation. Simultaneous administration of adenosine and acetylcholine failed to exert any additive protective effect, suggesting a shared mechanism between the two. Our data further revealed a cross-talk between the adenosine and acetylcholine receptor signaling in reperfused rat hearts. Interestingly, the selective M(2) muscarinic acetylcholine receptor antagonist methoctramine significantly attenuated the cardioprotective effect of adenosine. In addition, treatment with adenosine upregulated the expression and the maximal binding capacity of muscarinic acetylcholine receptor, which were inhibited by the selective A(1) adenosine receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX) and the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). These data suggested a possible functional coupling between the adenosine and muscarinic receptors behind the observed cardioprotection. Furthermore, nitric oxide was found involved in triggering the response to each of the two receptor agonist. In summary, there may be a cross-talk between the adenosine and muscarinic receptors in ischemic/reperfused myocardium with nitric oxide synthase might serve as the distal converging point. In addition, adenosine contributes to the invigorating effect of adenosine on muscarinic receptor thereby prompting to regulation of cardiac function. These findings argue for a potentially novel mechanism behind the adenosine-mediated cardioprotection.  相似文献   

20.
Adenosine has been demonstrated for its actions on gastric secretion and stress-induced gastric ulceration in animals. We examined the pharmacological actions of adenosine on ethanol-evoked gastric lesions and gastric mucosal blood flow (GMBF) in rats, because both of them are closely related. Adenosine pretreatment, in dose of 7.5 mg/kg increased GMBF and protected against ethanol-evoked gastric lesion formation. However, this antiulcer action was followed by an aggravation of gastric lesions and reduction in GMBF. We further investigated whether these actions could act through the adenosine A1 or A2 receptors, therefore L-phenylisopropyladenosine (L-PIA) or N-ethylcarboxamidoadenosine (NECA), the adenosine A1 or A2 receptor agonists, respectively, were used. The drugs given in doses of 10 or 50 micrograms/kg for L-PIA and 1 or 5 micrograms/kg for NECA, dose-dependently inhibited GMBF and potentiated ethanol-induced gastric damage. When the two drugs were given together to animals, they did not further aggravate the severity of ulceration and reduction of GMBF. These findings indicate that the antiulcer action of adenosine is not mediated via the adenosine A1 and A2 receptors but if acts through different adenosine receptor subtypes. It was because the lesion worsening effects of adenosine at the second stage of the biphasic responses were similar to the actions of L-PIA and NECA, the ulcer potentiating effect is probably acting through adenosine A1 and A2 receptors in anaesthetised rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号