首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351-357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu(+) challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200-206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu(+) challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4(+) T-cell decline. In contrast, all control animals had dramatic drops in their CD4(+) T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.  相似文献   

2.
Previous studies have shown that vaccination and boosting of rhesus macaques with attenuated vesicular stomatitis virus (VSV) vectors encoding Env and Gag proteins of simian immunodeficiency virus-human immunodeficiency virus (SHIV) hybrid viruses protect rhesus macaques from AIDS after challenge with the highly pathogenic SHIV 89.6P (23). In the present study, we compared the effectiveness of a single prime-boost protocol consisting of VSV vectors expressing SHIV Env, Gag, and Pol proteins to that of a protocol consisting of a VSV vector prime followed with a single boost with modified vaccinia virus Ankara (MVA) expressing the same SHIV proteins. After challenge with SHIV 89.6P, MVA-boosted animals controlled peak challenge viral loads to less than 2 x 10(6) copies/ml (a level significantly lower than that seen with VSV-boosted animals and lower than those reported for other vaccine studies employing the same challenge). MVA-boosted animals have shown excellent preservation of CD4(+) T cells, while two of four VSV-boosted animals have shown significant loss of CD4(+) T cells. The improved protection in MVA-boosted animals correlates with trends toward stronger prechallenge CD8(+)-T-cell responses to SHIV antigens and stronger postchallenge SHIV-neutralizing antibody production.  相似文献   

3.
Various simian immunodeficiency virus (SIV)sm/mac and simian/human immunodeficiency virus (SHIV) strains are used in different macaque species to study AIDS pathogenesis, as well as to evaluate candidate vaccine and anti-retroviral drugs efficacy. In this study we investigated the effect of route of infection, species of macaques and nature of virus stock on early plasma viral RNA load. We monitored the plasma RNA concentrations of 63 rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis) infected with well-characterised virus stocks administered either by oral, rectal, vaginal or intravenous (i.v.) routes. In SIV(mac)-infected macaques, no significant difference in plasma RNA loads was observed between the rectal, oral and i.v. routes of infection. Cynomolgus macaques developed lower steady state SIV plasma RNA concentrations compared with rhesus macaques and no significant difference was observed between rectal and i.v. routes of infection. In SHIV(89.6p)-infected macaques, no difference between species or between route of infection was observed with this particular chimeric virus.  相似文献   

4.
Nontraumatic vaginal inoculation of rhesus macaques with a simian/human immunodeficiency virus (SIV/HIV) chimera containing the envelope gene from HIV-1 89.6 (SHIV 89.6) results in systemic infection (Y. Lu, B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045-3050, 1996). A total of five rhesus macaques have each been infected by exposure to at least three intravaginal inoculations of SHIV 89.6. The SHIV 89.6 infection is characterized by a transient viremia that evokes humoral and cellular immune responses to HIV and SIV antigens, but disease does not develop in animals infected with SHIV 89.6. To determine if a previous infection with SHIV 89.6 by vaginal inoculation could protect animals from vaginal challenge with pathogenic SIV, all five animals were intravaginally inoculated twice with pathogenic SIV-mac239. After challenge, all of the SHIV-immunized animals had low or undetectable viral RNA levels in plasma compared to control animals. Three of the five of the SHIV-immunized animals remained virus isolation negative for more than 8 months, while two became virus isolation positive. The presence of SIV Gag-specific cytotoxic T lymphocytes in peripheral blood mononuclear cells and SIV-specific antibodies in cervicovaginal secretions at the time of challenge was associated with resistance to pathogenic SIV infection after vaginal challenge. These results suggest that protection from sexual transmission of HIV may be possible by effectively stimulating both humoral and cellular antiviral immunity in the systemic and genital mucosal immune compartments.  相似文献   

5.
We used the rhesus macaque model of heterosexual human immunodeficiency virus (HIV) transmission to test the hypothesis that in vitro measures of macrophage tropism predict the ability of a primate lentivirus to initiate a systemic infection after intravaginal inoculation. A single atraumatic intravaginal inoculation with a T-cell-tropic molecular clone of simian immunodeficiency virus (SIV), SIVmac239, or a dualtropic recombinant molecular clone of SIV, SIVmac239/1A11/239, or uncloned dualtropic SIVmac251 or uncloned dualtropic simian/human immunodeficiency virus (SHIV) 89.6-PD produced systemic infection in all rhesus macaques tested. However, vaginal inoculation with a dualtropic molecular clone of SIV, SIVmac1A11, resulted in transient viremia in one of two rhesus macaques. It has previously been shown that 12 intravaginal inoculations with SIVmac1A11 resulted in infection of one of five rhesus macaques (M. L. Marthas, C. J. Miller, S. Sutjipto, J. Higgins, J. Torten, B. L. Lohman, R. E. Unger, H. Kiyono, J. R. McGhee, P. A. Marx, and N. C. Pedersen, J. Med. Primatol. 21:99–107, 1992). In addition, SHIV HXBc2, which replicates in monkey macrophages, does not infect rhesus macaques following multiple vaginal inoculations, while T-cell-tropic SHIV 89.6 does (Y. Lu, P. B. Brosio, M. Lafaile, J. Li, R. G. Collman, J. Sodroski, and C. J. Miller, J. Virol. 70:3045–3050, 1996). These results demonstrate that in vitro measures of macrophage tropism do not predict if a SIV or SHIV will produce systemic infection after intravaginal inoculation of rhesus macaques. However, we did find that the level to which these viruses replicate in vivo after intravenous inoculation predicts the outcome of intravaginal inoculation with each virus.  相似文献   

6.
Attenuated primate lentivirus vaccines provide the most consistent protection against challenge with pathogenic simian immunodeficiency virus (SIV). Thus, they provide an excellent model to examine the influence of the route of immunization on challenge outcome and to study vaccine-induced protective anti-SIV immune responses. In the present study, rhesus macaques were immunized with live nonpathogenic simian-human immunodeficiency virus (SHIV) 89.6 either intravenously or mucosally (intranasally or intravaginally) and then challenged intravaginally with pathogenic SIVmac239. The route of immunization did not affect mucosal challenge outcome after a prolonged period of systemic infection with the nonpathogenic vaccine virus. Further, protection from the SIV challenge was associated with the induction of multiple host immune effector mechanisms. A comparison of immune responses in vaccinated-protected and vaccinated-unprotected animals revealed that vaccinated-protected animals had higher frequencies of SIV Gag-specific cytotoxic T lymphocytes and gamma interferon (IFN-gamma)-secreting cells during the acute phase postchallenge. Vaccinated-protected animals also had a more pronounced increase in peripheral blood mononuclear cell IFN-alpha mRNA levels than did the vaccinated-unprotected animals in the first few weeks after challenge. Thus, innate as well as cellular anti-SIV immune responses appeared to contribute to the SHIV89.6-induced protection against intravaginal challenge with pathogenic SIVmac239.  相似文献   

7.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

8.
The magnitude and breadth of neutralizing antibodies raised in response to infection with chimeric simian-human immunodeficiency virus (SHIV) in rhesus macaques were evaluated. Infection with either SHIV-HXB2, SHIV-89.6, or SHIV-89.6PD raised high-titer neutralizing antibodies to the homologous SHIV (SHIV-89.6P in the case of SHIV-89.6PD-infected animals) and significant titers of neutralizing antibodies to human immunodeficiency virus type 1 (HIV-1) strains MN and SF-2. With few exceptions, however, titers of neutralizing antibodies to heterologous SHIV were low or undetectable. The antibodies occasionally neutralized heterologous primary isolates of HIV-1; these antibodies required >40 weeks of infection to reach detectable levels. Notable was the potent neutralization of the HIV-1 89.6 primary isolate by serum samples from SHIV-89.6-infected macaques. These results demonstrate that SHIV-HXB2, SHIV-89.6, and SHIV-89.6P possess highly divergent, strain-specific neutralization epitopes. The results also provide insights into the requirements for raising neutralizing antibodies to primary isolates of HIV-1.  相似文献   

9.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIV(KU). Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIV(KU) and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

10.
The adenovirus type 5 (Ad5)-based vaccine developed by Merck failed to either prevent HIV-1 infection or suppress viral load in subsequently infected subjects in the STEP human Phase 2b efficacy trial. Analogous vaccines had previously also failed in the simian immunodeficiency virus (SIV) challenge-rhesus macaque model. In contrast, vaccine protection studies that used challenge with a chimeric simian-human immunodeficiency virus (SHIV89.6P) in macaques did not predict the human trial results. Ad5 vector-based vaccines did not protect macaques from infection after SHIV89.6P challenge but did cause a substantial reduction in viral load and a preservation of CD4+ T cell counts after infection, findings that were not reproduced in the human trials. Although the SIV challenge model is incompletely validated, we propose that its expanded use can help facilitate the prioritization of candidate HIV-1 vaccines, ensuring that resources are focused on the most promising candidates. Vaccine designers must now develop T cell vaccine strategies that reduce viral load after heterologous challenge.  相似文献   

11.
To develop immunoprophylaxis regimens against mother-to-child human immunodeficiency virus type 1 (HIV-1) transmission, we established a simian-human immunodeficiency virus (SHIV) model in neonatal macaques that mimics intrapartum mucosal virus exposure (T.W. Baba, J. Koch, E.S. Mittler et al: AIDS Res Hum Retroviruses 10:351-357, 1994). We protected four neonates from oral SHIV-vpu+ challenge by ante- and postpartum treatment with a synergistic triple combination of immunoglobulin (Ig) G1 human anti-HIV-1 neutralizing monoclonal antibodies (mAbs) (T.W. Baba, V. Liska, R. Hofmann-Lehmann et al: Nature Med 6:200-206, 2000), which recognize the CD4-binding site of Env, a glycosylation-dependent gp120, or a linear gp41 epitope. Two neonates that received only postpartum mAbs were also protected from oral SHIV-vpu+ challenge, indicating that postpartum treatment alone is sufficient. Next, we evaluated a similar mAb combination against SHIV89.6P, which encodes env of primary HIV89.6. One of four mAb-treated neonates was protected from infection and two maintained normal CD4+ T-cell counts. We conclude that the epitopes recognized by the three mAbs are important determinants for achieving protection. Combination immunoprophylaxis with synergistic mAbs seems promising to prevent maternal HIV-1 transmission in humans.  相似文献   

12.
Inoculation of cats, goats and monkeys with plasmids encoding full-length proviral genomes results in persistent lentiviral infections. This system could be used as a method for administration of an attenuated human immunodeficiency virus (HIV) vaccine. Here, we compare the virology and immunology in rhesus macaques inoculated with either simian/human immunodeficiency virus 89.6 (SHIV 89.6) virus or a plasmid containing the SHIV 89.6 proviral genome. There was a delay in appearance of systemic infection in DNA-inoculated animals compared with virus-inoculated animals, but otherwise the pattern of infection was similar. The serum immunoglobulin G anti-simian immunodeficiency virus (SIV) binding antibody response in DNA-inoculated animals was also delayed compared with virus-inoculated animals, but ultimately there was no difference between live virus and DNA-inoculation in the ability to induce the anti-SIV immune responses that were measured. Thus, the data support the concept that plasmid DNA encoding an attenuated virus could be used instead live virus for vaccination.  相似文献   

13.
The utility of the simian immunodeficiency virus of macaques (SIVmac) model of AIDS has been limited by the genetic divergence of the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and the SIVs. To develop a better AIDS animal model, we have been exploring the infection of rhesus monkeys with chimeric simian/human immunodeficiency viruses (SHIVs) composed of SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rev. SHIV-89.6, constructed with the HIV-1 env of a cytopathic, macrophage-tropic clone of a patient isolate of HIV-1 (89.6), was previously shown to replicate to a high degree in monkeys during primary infection. However, pathogenic consequences of chronic infection were not evident. We now show that after two serial in vivo passages by intravenous blood inoculation of naive rhesus monkeys, this SHIV (SHIV-89.6P) induced CD4 lymphopenia and an AIDS-like disease with wasting and opportunistic infections. Genetic and serologic evaluation indicated that the reisolated SHIV-89.6P expressed envelope glycoproteins that resembled those of HIV-1. When inoculated into naive rhesus monkeys, SHIV-89.6P caused persistent infection and CD4 lymphopenia. This chimeric virus expressing patient isolate HIV-1 envelope glycoproteins will be valuable as a challenge virus for evaluating HIV-1 envelope-based vaccines and for exploring the genetic determinants of HIV-1 pathogenicity.  相似文献   

14.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

15.
We evaluated four priming-boosting vaccine regimens for the highly pathogenic simian human immunodeficiency virus SHIV89.6P in Macaca nemestrina. Each regimen included gene gun delivery of a DNA vaccine expressing all SHIV89.6 genes plus Env gp160 of SHIV89.6P. Additional components were two recombinant vaccinia viruses, expressing SHIV89.6 Gag-Pol or Env gp160, and inactivated SHIV89.6 virus. We compared (i) DNA priming/DNA boosting, (ii) DNA priming/inactivated virus boosting, (iii) DNA priming/vaccinia virus boosting, and (iv) vaccinia virus priming/DNA boosting versus sham vaccines in groups of 6 macaques. Prechallenge antibody responses to Env and Gag were strongest in the groups that received vaccinia virus priming or boosting. Cellular immunity to SHIV89.6 peptides was measured by enzyme-linked immunospot assay; strong responses to Gag and Env were found in 9 of 12 vaccinia virus vaccinees and 1 of 6 DNA-primed/inactivated-virus-boosted animals. Vaccinated macaques were challenged intrarectally with 50 50% animal infectious doses of SHIV89.6P 3 weeks after the last immunization. All animals became infected. Five of six DNA-vaccinated and 5 of 6 DNA-primed/particle-boosted animals, as well as all 6 controls, experienced severe CD4(+)-T-cell loss in the first 3 weeks after infection. In contrast, DNA priming/vaccinia virus boosting and vaccinia virus priming/DNA boosting vaccines both protected animals from disease: 11 of 12 macaques had no loss of CD4(+) T cells or moderate declines. Virus loads in plasma at the set point were significantly lower in vaccinia virus-primed/DNA-boosted animals versus controls (P = 0.03). We conclude that multigene vaccines delivered by a combination of vaccinia virus and gene gun-delivered DNA were effective against SHIV89.6P viral challenge in M. nemestrina.  相似文献   

16.
T-cell-mediated immune effector mechanisms play an important role in the containment of human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) replication after infection. Both vaccination- and infection-induced T-cell responses are dependent on the host major histocompatibility complex classes I and II (MHC-I and MHC-II) antigens. Here we report that both inherent, host-dependent immune responses to SIVmac251 infection and vaccination-induced immune responses to viral antigens were able to reduce virus replication and/or CD4+ T-cell loss. Both the presence of the MHC-I Mamu-A*01 genotype and vaccination of rhesus macaques with ALVAC-SIV-gag-pol-env (ALVAC-SIV-gpe) contributed to the restriction of SIVmac251 replication during primary infection, preservation of CD4+ T cells, and delayed disease progression following intrarectal challenge exposure of the animals to SIV(mac251 (561)). ALVAC-SIV-gpe immunization induced cytotoxic T-lymphocyte (CTL) responses cumulatively in 67% of the immunized animals. Following viral challenge, a significant secondary virus-specific CD8+ T-cell response was observed in the vaccinated macaques. In the same immunized macaques, a decrease in virus load during primary infection (P = 0.0078) and protection from CD4 loss during both acute and chronic phases of infection (P = 0.0099 and P = 0.03, respectively) were observed. A trend for enhanced survival of the vaccinated macaques was also observed. Neither boosting the ALVAC-SIV-gpe with gp120 immunizations nor administering the vaccine by the combination of mucosal and systemic immunization routes increased significantly the protective effect of the ALVAC-SIV-gpe vaccine. While assessing the role of MHC-I Mamu-A*01 alone in the restriction of viremia following challenge of nonvaccinated animals with other SIV isolates, we observed that the virus load was not significantly lower in Mamu-A*01-positive macaques following intravenous challenge with either SIV(mac251 (561)) or SIV(SME660). However, a significant delay in CD4+ T-cell loss was observed in Mamu-A*01-positive macaques in each group. Of interest, in the case of intravenous or intrarectal challenge with the chimeric SIV/HIV strains SHIV(89.6P) or SHIV(KU2), respectively, MHC-I Mamu-A*01-positive macaques did not significantly restrict primary viremia. The finding of the protective effect of the Mamu-A*01 molecule parallels the protective effect of the B*5701 HLA allele in HIV-1-infected humans and needs to be accounted for in the evaluation of vaccine efficacy against SIV challenge models.  相似文献   

17.
Comparative studies were performed to determine the neuropathogenesis of infection in macaques with simian human immunodeficiency virus (SHIV)89.6P and SHIVKU. Both viruses utilize the CD4 receptor and CXCR4 co-receptor. However, in addition, SHIV89.6P uses the CCR5 co-receptor. Both agents are dual tropic for CD4+ T cells and blood-derived macrophages of rhesus macaques. Following inoculation into macaques, both caused rapid elimination of CD4+ T cells but they varied greatly in mechanisms of neuropathogenesis. Two animals infected with SHIV89.6P developed typical lentiviral encephalitis in which multinucleated giant cell formation, nodular accumulations of microglial cells, activated macrophages and astrocytes, and perivascular accumulations of mononuclear cells were present in the brain. Many of the macrophages in these lesions contained viral RNA. Three macaques infected with SHIVKU and killed on days 6, 11 and 18, respectively, developed a slowly progressive infection in the CNS but macrophages were not productively infected and there were no pathological changes in the brain. Two other animals infected with this virus and killed several months later showed minimal infection in the brain even though one of the two developed encephalitis of unknown etiology. The basic difference in the mechanisms of neuropathogenesis by the two viruses may be related to co-receptor usage. SHIV89.6P, in utilizing the CCR5 co-receptor, caused neuropathogenic effects that are similar to other neurovirulent primate lentiviruses.  相似文献   

18.
We previously reported efficient transmission of the pathogenic R5 simian-human immunodeficiency virus SHIV(SF162P3N) isolate in Indian rhesus macaques by intravenous and intrarectal inoculations, with a switch to CXCR4 coreceptor usage in ~50% of infected animals that progressed rapidly to disease. Since women continue to be disproportionately affected by HIV, we developed an animal model based on the intravaginal challenge of female rhesus monkeys with SHIV(SF162P3N) and sought to validate the utility of this model to study relevant aspects of HIV transmission and pathogenesis. The effect of viral dose on infection outcome was evaluated to determine the optimal conditions for the evaluation of HIV-1 preventive and therapeutic strategies. We found that the virus can successfully cross the vaginal mucosal surface to establish infection and induce disease with coreceptor switch, but with lower efficiencies compared to intravenous and rectal transmissions. In contrast to intrarectal infection, peak and cumulative viral load over a 1 year-infection period were significantly greater in macaques exposed intravaginally to lower rather than higher inoculum doses. Moreover, low and transient viremia was observed only in macaques that were challenged intravaginally twice within the same day with a high dose of virus, which can be seen as doubling the dose. Taken together, these results show that SHIV(SF162P3N) can successfully transmit across the genital mucosa, undergo coreceptor switch, and induce disease. However, the administered dose appears to impact SHIV(SF162P3N) vaginal infection outcome in an unexpected manner.  相似文献   

19.
Although the correlates of vaccine-induced protection against human immunodeficiency virus type 1 (HIV-1) are not fully known, it is presumed that neutralizing antibodies (NAb) play a role in controlling virus infection. In this study, we examined immune responses elicited in rhesus macaques following vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing an HIV-1 Env V3 antigen (rBCG Env V3). We also determined the effect of vaccination on protection against challenge with either a simian-human immunodeficiency virus (SHIV-MN) or a highly pathogenic SHIV strain (SHIV-89.6PD). Immunization with rBCG Env V3 elicited significant levels of NAb for the 24 weeks tested that were predominantly HIV-1 type specific. Sera from the immunized macaques neutralized primary HIV-1 isolates in vitro, including HIV-1BZ167/X4, HIV-1SF2/X4, HIV-1CI2/X4, and, to a lesser extent, HIV-1MNp/X4, all of which contain a V3 sequence homologous to that of rBCG Env V3. In contrast, neutralization was not observed against HIV-1SF33/X4, which has a heterologous V3 sequence, nor was it found against primary HIV-1 R5 isolates from either clade A or B. Furthermore, the viral load in the vaccinated macaques was significantly reduced following low-dose challenge with SHIV-MN, and early plasma viremia was markedly decreased after high-dose SHIV-MN challenge. In contrast, replication of pathogenic SHIV-89.6PD was not affected by vaccination in any of the macaques. Thus, we have shown that immunization with an rBCG Env V3 vaccine elicits a strong, type-specific V3 NAb response in rhesus macaques. While this response was not sufficient to provide protection against a pathogenic SHIV challenge, it was able to significantly reduce the viral load in macaques following challenge with a nonpathogenic SHIV. These observations suggest that rBCG vectors have the potential to deliver an appropriate virus immunogen for desirable immune elicitations.  相似文献   

20.
Newborn macaques were vaccinated against a chimeric simian human immunodeficiency (SHIV) virus, SHIV-vpu+, by DNA priming and boosting with homologous HIV-1 gp160. Following SHIV-vpu+ challenge, containment of infection was observed in 4 of 15 animals given DNA priming/protein boost vaccination and in three of four animals given gp160 boosts only. Rechallenge with homologous virus of six animals that contained the first challenge virus resulted in rapid viral clearance or low viral loads. Upon additional rechallenge with heterologous, pathogenic SHIV89.6P, four of these six animals maintained normal CD4+ T-cell counts with no or limited SHIV89.6P infection. Our data suggest that humoral and cellular immune mechanisms may have contributed to the containment of SHIV89.6P; however, viral interference with SHIV-vpu+ could also have played a role. Our results indicate that immunogenicity and efficacy of candidate AIDS vaccines are not affected when vaccination is initiated during infancy as compared with later in life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号