首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural biology of polyomavirus middle T antigen.   总被引:1,自引:0,他引:1  
K A Gottlieb  L P Villarreal 《Microbiology and molecular biology reviews》2001,65(2):288-318 ; second and third pages, table of contents
"It has been commented by someone that 'polyoma' is an adjective composed of a prefix and suffix, with no root between--a meatless linguistic sandwich" (C. J. Dawe). The very name "polyomavirus" is a vague mantel: a name given before our understanding of these viral agents was clear but implying a clear tumor life-style, as noted by the late C. J. Dawe. However, polyomavirus are not by nature tumor-inducing agents. Since it is the purpose of this review to consider the natural function of middle T antigen (MT), encoded by one of the seemingly crucial transforming genes of polyomavirus, we will reconsider and redefine the virus and its MT gene in the context of its natural biology and function. This review was motivated by our recent in vivo analysis of MT function. Using intranasal inoculation of adult SCID mice, we have shown that polyomavirus can replicate with an MT lacking all functions associated with transformation to similar levels to wild-type virus. These observations, along with an almost indistinguishable replication of all MT mutants with respect to wild-type viruses in adult competent mice, illustrate that MT can have a play subtle role in acute replication and persistence. The most notable effect of MT mutants was in infections of newborns, indicating that polyomavirus may be highly adapted to replication in newborn lungs. It is from this context that our current understanding of this well-studied virus and gene is presented.  相似文献   

2.
Hamster polyomavirus (HaPV) is associated with lymphoid and hair follicle tumors in Syrian hamsters. The early region of HaPV has the potential to encode three polypeptides (which are related to the mouse polyomavirus early proteins) and can transform fibroblasts in vitro. We identified the HaPV middle T antigen (HamT) as a 45-kDa protein. Like its murine counterpart, HamT was associated with serine/threonine phosphatase, phosphatidylinositol-3 kinase, and protein tyrosine kinase activities. However, whereas mouse middle T antigen associates predominantly with pp60c-src and pp62c-yes, HamT was associated with a different tyrosine kinase, p59fyn. The ability of HaPV to cause lymphoid tumors may therefore reside in its ability to associate with p59fyn, a potentially important tyrosine kinase in lymphocytes.  相似文献   

3.
We have used two-dimensional gel electrophoresis to analyze in more detail the cellular proteins which associate with the middle and small tumor antigens (MT and ST, respectively) of polyomavirus. Proteins with molecular masses of 27, 29, 36, 51, 61, 63, and 85 kilodaltons (kDa) that specifically coimmunoprecipitated with MT were identified on these gels. The 36-, 51-, 61-, 63-, and 85-kDa proteins are probably the same as the proteins of similar sizes previously reported by a number of groups, whereas the 27- and 29-kDa proteins represent proteins that are heretofore undescribed. The 27- and 29-kDa proteins were abundant cellular proteins, whereas the others were minor cellular constituents. The association of each of these proteins with MT was sensitive to one or more mutations in MT that rendered it transformation defective. The association of the 85-kDa protein was the most sensitive indicator of the transformation competence of MT mutants. In addition, the 85-kDa protein was the only associated protein whose association with MT changed consistently in parallel with MT-associated phosphatidylinositol kinase activity. Furthermore, the fraction of the 85-kDa protein which was found associated with the MT complex contained 15 to 20% of its phosphate content on tyrosine. The 36- and 63-kDa proteins complexed with both polyomavirus MT and ST and comigrated on two-dimensional gels with two simian virus 40 ST-associated proteins originally described by Rundell and coworkers (K. Rundell, E. O. Major, and M. Lampert, J. Virol. 37:1090-1093, 1981). None of the other MT-associated proteins associated significantly with ST.  相似文献   

4.
Associated with the middle T antigen of polyomavirus is a novel phosphatidylinositol (PtdIns) kinase activity which phosphorylates PtdIns at the D-3 position of the inositol ring. We have undertaken an analysis of myo-[3H]inositol-containing compounds in a panel of NIH 3T3 cell lines stably transfected with transforming and nontransforming middle T antigen mutants. All cell lines from which PtdIns 3-kinase activity coprecipitated with middle T antigen exhibited modestly elevated levels of PtdIns(3)P and compounds with predicted PtdIns(3,4)P2 and PtdIns(3,4,5)P3 structures. Complex formation between middle T antigen and PtdIns 3-kinase correlated not with an increase in total inositol phosphate levels but rather with elevated levels of InsP2 and InsP4. A specific increase in the level of an InsP2 species which comigrated in high-pressure liquid chromatography analysis with Ins(3,4)P2 was observed. These results suggest that association of the polyomavirus middle T antigen with PtdIns 3-kinase activates a distinct inositol metabolic pathway.  相似文献   

5.
Cloned polyomavirus genomes encoding the small T antigen or truncated forms of the middle T antigen facilitated the growth of genomes encoding only the large T antigen in mouse 3T6 cells. We conclude that an N-terminal domain of the middle T antigen, in the appropriate cellular location, can substitute for the small T antigen during lytic infection.  相似文献   

6.
Two cellular proteins of 36 and 63 kDa which bind the small T and middle T antigens of polyomavirus recently have been identified as the catalytic and regulatory subunits of the phosphoserine/threonine-specific type 2A protein phosphatase (PP2A). We report here the presence of phosphoseryl phosphatase activity associated with polyomavirus small T and middle T antigens in immunoprecipitates prepared from virus-infected and transformed cells. Phosphatase activity was also found associated with middle T-antigen mutants, some of which had been defined previously to associate with 36- and 63-kDa cellular proteins. Middle T-antigen-associated phosphatase activity was sensitive to okadaic acid and microcystin-LR, inhibitors of PP2A, and insensitive to inhibitor 1 or 2, orthovanadate, or EDTA. Using antiserum specific for the catalytic subunit of PP2A, we found that unlike the majority of PP2A, middle T-antigen-bound PP2A was membrane associated. However, no gross change in the amount, activity, or localization of PP2A could be attributed to middle T-antigen expression in transformed cells. Anti-PP2A antibodies coprecipitated a 63-kDa protein from normal cells and in addition coprecipitated middle T antigen, 60- and 61-kDa proteins (identified as src family members), and an 81-kDa protein from middle T-antigen-transformed cells. Furthermore, we detected protein kinase activity in PP2A immunoprecipitates and protein phosphatase activity in src immune complexes from extracts of middle T-antigen-transformed, but not normal, cells. These results reinforce the notion that at least a portion of middle T antigen bridges a protein kinase with a protein phosphatase.  相似文献   

7.
In polyomavirus-transformed cells, pp60c-src is activated by association with polyomavirus middle T antigen. These complexes have a higher tyrosine kinase activity compared with that of unassociated pp60c-src. Genetic analyses have revealed that the carboxy-terminal 15 amino acids of pp60c-src and the amino-terminal half of middle T antigen are required for this association and consequent activation of the tyrosine kinase. To define in greater detail the borders of the domain in middle T antigen required for activation of pp60c-src, we constructed a set of unidirectional amino-terminal deletion mutants of middle T antigen. Analysis of these mutants revealed that the first six amino acids of middle T antigen are required for it to activate the kinase activity of pp60c-src and to transform Rat-1 fibroblasts. Analysis of a series of insertion and substitution mutants confirmed these observations and further revealed that mutations affecting the first four amino acids of middle T antigen reduced or abolished its capacity to activate the kinase activity of pp60c-src and to transform Rat-1 cells in culture. Our results suggest that the first four amino acids of middle T antigen constitute part of a domain required for activation of the pp60c-src tyrosyl kinase activity and for consequent cellular transformation.  相似文献   

8.
The functional importance of the two clusters of positively charged amino acids which flank the hydrophobic membrane-anchoring sequence of polyomavirus middle T (mT) protein has been investigated by using site-directed mutagenesis. A clear asymmetry was apparent. No effect on transformation was seen following multiple alterations or complete removal of the cluster at the carboxyl end of the protein. In contrast, a single substitution replacing the first arginine amino terminal to the hydrophobic stretch with glutamic acid, but not with lysine, histidine, or methionine, produced a partially transformation-defective mutant with a novel phenotype. This mutant failed to confer anchorage-independent growth on F111 established rat embryo fibroblasts but induced foci with altered morphology compared with wild-type mT. Biochemical studies on this mutant revealed that F111 clones expressing levels of mutant mT equivalent to those of wild-type controls showed a 65% reduction in pp60c-src activation and an 87% reduction in mT-associated phosphatidylinositol 3-kinase activity. However, F111 clones expressing seven times more mutant mT than did wild-type controls showed equal or greater levels of kinase activities yet remained incompletely transformed. Possible mechanisms involving this transformation-sensitive region of mT are discussed.  相似文献   

9.
10.
High yields of soluble, biologically active pp60c-src and middle t antigen (MTAg) of polyomavirus were produced in insect cells, using a baculovirus expression system. In mammalian cells, pp60c-src undergoes a regulatory phosphorylation on Tyr-527 in vivo and is autophosphorylated on Tyr-416 in vitro. In insect cells, pp60c-src was phosphorylated primarily on Tyr-416, although Tyr-527 was detectable at a low level. A kinase-negative mutant of pp60c-src was not phosphorylated on either Tyr-527 or Tyr-416 in insect cells and thus is an excellent biochemical reagent to search for the regulatory kinase that usually phosphorylates Tyr-527 in mammalian cells. MTAg synthesized in insect cells was not phosphorylated on tyrosine residues in vivo or in vitro, suggesting that it did not associate with any endogenous tyrosine kinases. However, MTAg isolated from cells coinfected with viruses encoding both MTAg and pp60c-src was phosphorylated on tyrosine residues both in vivo and in vitro.  相似文献   

11.
Polyomavirus middle T antigen (MT) is the major transforming protein of the virus. It functions through interactions with a number of cellular proteins involved in cell proliferation. MT forms complexes with protein phosphatase 2A (PP2A), pp60c-src, phosphatidylinositol 3-kinase, and Shc. We introduced both deletion and point mutations into three regions of MT and examined their ability to associate with PP2A and pp60c-src. The first 25 amino acid residues of MT are required for association with PP2A and pp60c-src. Amino acids 105 to 111, comprising the sequence Cys-Arg-Met-Pro-Leu-Thr-Cys, is also required for complex formation between MT and PP2A. However, the sequence Asp-Lys-Gly-Gly (amino acids 44 to 47), also found in the B subunit of PP2A, is dispensable for complex formation between MT and PP2A. We find a strict correlation between the ability of MT to associate with PP2A and the ability of MT to associate with pp60c-src. One mutant, L5E, associates with a phosphatase other than PP2A, pp60c-src, and phosphatidylinositol 3-kinase in a manner similar to that of wild-type MT yet is reduced in its transforming ability on NIH 3T3 cells.  相似文献   

12.
Polyoma middle T antigen (mT) was expressed in rat F-111 cells under control of the dexamethasone-regulatable mouse mammary tumor virus promoter. Graded phenotypic responses to levels of mT induction by the hormone were seen, with morphological transformation, focus formation, and anchorage-independent growth requiring increasing levels of mT expression. The ability of different clones to form tumors reflected their maximum level of induction of mT-associated kinase and their ability to grow in soft agar. Expression of transformation parameters and tumorigenicity correlates with the level of mT phosphorylated by pp60c-src in immune complexes and not with the total amount of mT determined by metabolic labeling. We suggest that cellular factors regulate mT activity by forming a kinase-active fraction of mT molecules that controls the transformed state.  相似文献   

13.
A modular gene with a cDNA encoding the polyomavirus middle T antigen positioned behind the adenovirus type 2 major late promoter and tripartite leader was substituted for the E1a region in an adenovirus vector. Permissive human cells infected with this recombinant produce middle T protein at levels as high as those of the most abundant late adenoviral proteins, e.g., hexon or fiber. This level represents at least a 40-fold increase over that observed in a polyomavirus lytic infection of murine cells. Partial proteolytic mapping showed that this protein has the same primary structure as middle T protein produced in polyomavirus-infected murine cells. The adenovirus recombinant-generated middle T protein exhibited in vitro kinase activity, although at an approximately 10-fold-lower specific activity than that of middle T protein from polyomavirus-infected murine cells. Comparison of the expression levels of this middle T antigen-containing adenovirus vector with a similar construction encoding dihydrofolate reductase suggested that the translation efficiency of the inserted gene was dependent upon the proximity of its initiation codon to the tripartite leader. We tested this possibility by comparing three dihydrofolate reductase recombinants among which the spacing between the initiation codon and tripartite leader varied from 188 to 36 nucleotides. The efficiency of expression of dihydrofolate reductase protein dramatically increased as this spacing was reduced.  相似文献   

14.
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.  相似文献   

15.
16.
17.
Fourteen pGEX plasmids that express defined regions of polyomavirus middle T antigen in bacteria have been constructed. These polypeptides have been used to generate 18 new monoclonal antibodies directed against the unique portion of middle T and to map the approximate position of the antibody recognition sites onto the protein sequence. All of the antibodies effectively immunoprecipitate middle T and the associated 60- and 35-kDa components of protein phosphatase 2A. Four of the antibodies, however, do not react with middle T when it is bound to pp60c-src. These four probably bind to amino acids 203 to 218 of the middle T protein sequence, which are encoded by the mRNA immediately 3' to the splice junction that creates the C-terminal unique region. This suggests that additional middle T sequences are required for middle T's interaction with pp60c-src than are needed for its binding to protein phosphatase 2A. The antibodies localize this extra region and provide a means of distinguishing between these two associations.  相似文献   

18.
Deletion of residues 305 to 327 of polyomavirus middle T antigen, including the (Glu)6-Tyr-315 sequence that is a preferred site of phosphorylation in vitro by pp60c-src, markedly altered viral transformation of rat cells. The efficiency of transformation by the deletion mutant depended on how it was introduced into cells, and the resulting transformants displayed limited growth rates in monolayer and in suspension. Substitution of the polyomavirus residues 305 to 327 with a homologous region (containing [Glu]5-Ala-Tyr) from porcine gastrin did not restore wild-type transforming activity. These mutant middle T antigens interacted with pp60c-src and were phosphorylated in vitro. Thus, although a sequence of consecutive glutamic acid residues followed by a tyrosine is a dominant structural element which strongly influences the physical properties of middle T antigen, its presence did not ensure the biological activity of the protein. Other elements in this region of middle T antigen also contributed substantially to the transforming capacity of polyomavirus.  相似文献   

19.
Localization of the phosphorylations of polyomavirus large T antigen.   总被引:1,自引:10,他引:1  
Polyomavirus large T antigen is phosphorylated on both serine and threonine residues at a ratio of approximately 6 to 1. This phosphorylation could be resolved into a series of nine Staphylococcus aureus V8 phosphopeptides. All of these were found in an N-terminal chymotryptic fragment with a molecular weight of 57,000. A C-terminal formic acid fragment of 50,000-molecular-weight lacked phosphate. Therefore, unlike simian virus 40 large T antigen, polyomavirus large T antigen has no significant C-terminal phosphorylation. Limited V8 and hydroxylamine cleavage showed that the phosphorylations can be localized to two different portions of the molecule. A significant fraction of the phosphate was localized in the N-terminal portion of the molecule before residue 183. Within this region V8 peptides 4, 8, and 9 represented phosphorylations that were more proximal, while peptides 1, 2, and 3 included more distal phosphorylations. None of these phosphorylations appeared analogous to those of simian virus 40 large T antigen. V8 phosphopeptides 5 and 7 were more distal and could be distinguished in biological experiments from the N-terminal phosphorylations. Formic acid mapping suggested that much, if not all, of this phosphorylation is located between residues 257 and 285.  相似文献   

20.
Recombinant adenoviruses bearing the avian c-src gene and polyomavirus middle-T-antigen gene were isolated and used to simultaneously overexpress both proteins in human 293 cells. Cells overexpressing both proteins had greater middle-T-antigen-associated tyrosine kinase activity than cells overexpressing only middle T antigen. By contrast, the intrinsic pp60c-src tyrosine kinase activity was not greater in cells overexpressing both proteins than in cells overexpressing only pp60c-src. This system of simultaneous overexpression provides a means of obtaining large quantities of pp60c-src, middle T antigen, and the complex between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号