首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mixture of peptides released by tryptic hydrolysis of the collagen CNBr peptide, αl-CB3, has been resolved by ion-exchange chromatography. The resultant eleven tryptic peptides ranged in size from 3 to 46 amino acids and accounted for all the amino acids of the parent CNBr peptide. Two of the lysines in αl-CB3 from rat dentin collagen were shown to be hydroxylated to a substantial degree by isolation of the appropriate hydroxylysine-containing tryptic peptides. An analysis of the tryptic peptides indicated that αl-CB3 from dentin collagen is identical in structure to that from skin collagen, if hydroxylysine and hydroxyproline are considered equivalent to lysine and proline, respectively.  相似文献   

2.
[Alpha 1(III)]3 collagen was solubilized by pepsin digestion of normal human placental membranes and was purified by differential salt precipitation and carboxymethylcellulose chromatography. This collagen was digested with CNBr, and the resultant nine peptides were isolated and characterized. The chains are cross-linked by cysteinyl residues in the COOH-terminal peptide. Isolation of peptides derived from CNBr digestion of insoluble tissues was used as an assay for the presence of [alpha 1(I)]2alpha 2 and [alpha 1(III)]3 collagens. Both types are present in human skin, intestine, liver, spleen, kidney, lung, aorta, umbilical cord, placental membranes, and myocardium. Bone and tendon contain [alpha 1(I)]2alpha 2 collagen but, unlike the other tissues, lack [alpha 1(III)]3 collagen. Both [alpha 1(I)]2alpha 2 and[alpha 1(III)]3 collagens are present in scars of human skin, myocardium, tendon, and liver and of rabbit skin. The degree of hydroxylation of proline was 4 to 5% lower in the same peptides in skin, bone, and tendon than in the other tissues. The degree of hydroxylation of lysine in the same peptides derived from different tissues varied more widely.  相似文献   

3.
Dentin and predentin matrices contain Type I collagen and phosphophoryns as major constituents. A collagen-phosphophoryn conjugate is also present in small amounts. This conjugate has been implicated in the deposition of mineral. Its formation has been followed in rat incisors. Rats were labeled for varied time intervals with [3H]proline, followed by a 2-h pulse of [3H] serine. The soluble alpha- and beta-phosphophoryns were extracted under conditions minimizing degradation. The tooth residue was CNBr-treated and the collagen CNBr peptides alpha 1(I)CB7 and alpha 1(I)CB8 were collected along with the solubilized conjugate fraction. Each component was purified and the specific activities in [3H] proline, [3H]hydroxyproline, [3H]serine, and [3H]phosphoserine were determined. The collagen and alpha-phosphophoryn accumulated proline label linearly at the same rate over the entire period of labeling. Entry of [3H]proline into the conjugate fraction was delayed by approximately 9-10 h and then the label accumulated also linearly at the same rate. [3H]Serine was present at a different but constant level in each fraction; the conjugate had the lowest activity. These data indicate an extracellular formation of the conjugate at the mineralization front from precursors which followed different secretory pathways.  相似文献   

4.
Characterization of pepsin-solubilized bovine heart-valve collagen.   总被引:2,自引:0,他引:2       下载免费PDF全文
Collagens extracted from heart valves by using limited pepsin digestion were fractionated by differential salt precipitation. Collagen types were identified by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, amino acid analysis and cleavage with CNBr. Heart-valve collagen was heterogeneous in nature, consisting of a mixture of type-I and type-III collagens. The identity of type-III collagen was established on the basis of (a) insolubility in 1.7 M-NaC1 at neutral pH, (b) behaviour of this collagen fraction on gel electrophoresis under reducing and non-reducing conditions, (c) amino acid analysis showing a hydroxyproline/proline ratio greater than 1, and (d) profile of CNBr peptides on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis showing a peak characteristic for type-III collagen containing peptides alpha1(III)CB8 and alpha1(III)CB3. In addition to types-I and -III collagen, a collagen polypeptide not previously described in heart valves was identified. This polypeptide represented approx. 30% of the collagen fraction precipitated at 4.0 M-NaCl, it migrated between beta- and alpha1-collagen chains on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and its electrophoretic behaviour was not affected by disulphide-bond reduction. All collagen fractions from the heart valves contained increased amounts of hydroxylysine when compared with type-I and -III collagens from other tissues. The presence of beta- and gamma-chains and higher aggregates in pepsin-solubilized collagen indicated that these collagens were highly cross-linked and suggested that some of these cross-links involved the triple-helical regions of the molecule. It is likely that the higher hydroxylysine content of heart-valve collagen is responsible for the high degree of intermolecular cross-linking and may be the result of an adaptive mechanism for the specialized function of these tissues.  相似文献   

5.
1. After the administration of l-[G-(3)H]proline to guinea pigs deprived of ascorbic acid for increasing periods of time, the specific radioactivities of proline and hydroxyproline in skin collagen and aortic elastin were determined at various time-intervals after administration of the labelled compound with a view to studying the formation and degradation of collagen and elastin both deficient in hydroxyproline. 2. As judged from the incorporation of radioactivity into elastin proline, elastin synthesis was not decreased in the ascorbic acid-deficient animals. There was however, a rapid decline in the specific radioactivity of elastin hydroxyproline. The proline/hydroxyproline specific-radioactivity ratio was approx. 1.5:1 after 6 days and 20:1 after 12 days of ascorbic acid deprivation, in contrast with the ratio of 1:1 in controls. The results suggested that the effect of ascorbic acid deficiency on elastin biosynthesis could be regarded as simply an elimination of hydroxylation of elastin proline with the formation and retention of a polymer increasingly deficient in hydroxyproline. 3. Collagen proline and hydroxyproline specific radioactivities were derived from material that was soluble in hot trichloroacetic acid, non-diffusible and collagenase-degradable. In contrast with elastin, there was a rapid decline in the specific radioactivity of proline as well as hydroxyproline in collagen from the ascorbic acid-deficient animals. However, the proline/hydroxyproline specific-radioactivity ratio in all samples from scorbutic animals was consistently slightly above 1:1. The results suggest the appearance in place of collagen, but in rapidly diminishing amounts, of a partially hydroxylated collagen in which the degree of hydroxylation may be decreased only by approx. 10%. 4. Incorporation of radioactivity into the diffusible hydroxyproline in skin remained relatively high despite the rapid decline in the incorporation of radioactivity into collagen. This observation is interpreted as indicative of an increasing degree of degradation of partially hydroxylated collagen to diffusible peptides. An alternative explanation might be that partially hydroxylated peptides are released to an increasing extent from ribosomes before they attain a length at least sufficient to render them non-diffusible. In either case it implies the accumulation in scurvy of low-molecular-weight peptides enriched in proline and deficient in hydroxyproline and could explain the failure to accumulate a high-molecular-weight collagen deficient in hydroxyproline. 5. It is thought, however, that, in addition, an inhibition of ribosomal amino acid incorporation leading to decreased synthesis of partially hydroxylated collagen may also occur, perhaps secondarily to impaired hydroxylation.  相似文献   

6.
1. After the administration of labelled proline to guinea pigs deprived of ascorbic acid for 15 days, the dorsal skin was examined 5 days later in an attempt to detect the presence of hydroxyproline-deficient collagen (protocollagen). The extent of incorporation of proline into skin collagens indicated a severe impairment of collagen synthesis. 2. A comparison of proline and hydroxyproline specific radioactivities in diffusible peptides obtained by treatment with collagenase of either purified skin collagens or direct hot-trichloroacetic acid extracts of skin failed to indicate the presence of protocollagen. Possible reasons for this are discussed. 3. The incorporation results did not indicate an inability of normal collagen, i.e. collagen hydroxylated to the normal degree, to cross-link in scurvy. 4. Incorporation of labelled proline into aortic elastin isolated from the same animals did not indicate a decrease in elastin biosynthesis in ascorbic acid deficiency, beyond that attributable to the inanition accompanying the vitamin deficiency. The proline/hydroxyproline specific-radioactivity ratio in elastin from scorbutic guinea pigs was about 6:1 in contrast with the 1:1 ratio in control groups. It is concluded that the formation of elastin hydroxyproline was ascorbate-dependent and that a hydroxyproline-deficient elastin is formed and retained in scurvy. The formation of desmosines was unimpaired in scorbutic animals. 5. Studies with chick embryos confirmed the formation of elastin hydroxyproline from free proline. Incorporation of free hydroxyproline into elastin hydroxyproline was negligible. 6. Digestion of solubilized samples with collagenase indicated that the hydroxyproline in guinea-pig aortic elastin preparations was not derived from contamination by collagen. It is suggested that most if not all of the hydroxyproline in the guinea pig elastin preparations investigated can be considered an integral part of the elastin molecule.  相似文献   

7.
Significant amounts of native collagen can be extracted from bovine articular cartilage after removal of the acid mucopolysaccharides by controlled proteolysis. The fraction thus solubilized upon denaturation gives rise to three identical alpha chains. Cleavage of these chains with CNBr generated nine peptides, all of which contain glycine as one-third of their total amino acid residues. Two of the smaller peptides CB-1 and CB-2 contain partially hydroxylated proline. A similar CNBr digest of intact cartilage also gives a series of peptides identical with those obtained from the soluble cartilage collagen. The absence of cross-linking peptides, the fact that only few beta components are seen in articular cartilage collagen and the similarity in peptide pattern between the two collagen fractions investigated, suggests that this collagen is stabilized by a different cross-linking mechanism, possibly involving an association with the tissue proteoglycans.  相似文献   

8.
In a previous study where rat skin collagen was labeled with 18O in the hydroxyl group of the collagen hydroxyproline we noticed that the decay rate of this label was much faster than had been observed when the skin collagen hydroxyproline was labeled with 3H in the prolyl ring. In this study a rat was labeled concurrently with [18O2] and [3H] proline and the rate of decline of both labels was determined in rat skin collagen hydroxyproline. After correction for growth dilution of the skin collagen the [18O] hydroxyproline was found to have a half-life of 27 days while the [3H] hydroxyproline had a half-life of 53 days. The decay rate of the [18O] hydroxyproline represents the true turnover rate of collagen since there is no possibility of recycling this label. Hence, the difference between this and the [3H] hydroxyproline decay rate is due to recycling of l-[3H] proline into new collagen. The efficiency of recycling of proline from catabolized collagen into new collagen was about 93%.  相似文献   

9.
The alpha2 chain of guinea pig skin collagen contains two additional methionyl residues in comparison with the alpha2 chain of other vertebrate species. The order of the three CNBr peptides unique to the alpha2 chain was established on the basis of the homology of their primary structures to sequences of previously ordered regions in the alpha1 and alpha2 chains of other colagens. The two larger peptides, 4A + 4B, were found to correspond to the region homologous to alpha2-CB4 of other species, while the smaller peptide, 3A, was homologous to the NH2-terminal portion of alpha2-CB3. Thus, the order of the peptides in the alpha2 chain of this collagen is 1-O-4A-4B-2-3A-3B-5. Periodate oxidation and alkaline or acid hydrolysis of the CNBr fragments showed that all of the hydroxlysine-linked carbohydrate in the alpha2 chain was present in alpha2-CB4B. Carbohydrate analyses were most consistent with the existence of single monosaccharide and disaccharide units in this region.  相似文献   

10.
A major glycoprotein 36 000 molecular weight) has been isolated from lung lavage of patients with alveolar proteinosis and found to contain five residues of hydroxyproline, fifty residues of glycine, three residues of methionine, 3 mol of sialic acid, 4.4 mol of mannose, 4.0 mol of galactose, 6.0 mol of glucosamine, and 1 mol of fucose. Cyanogen bromide (CNBr) treatment of the glycoprotein resulted, as expected, in four peptides of apparent molecular weights of 18 000, 12 000, 5000 and 1000, respectively. The chemical compositions of the CNBr peptides indicate the presence of hydroxyproline and high amounts of glycine in all but one of the peptides; two of the four CNBr peptides contain carbohydrate. Gel filtration, acrylamide gel electrophoresis and end-group analyses of the native glycoprotein and its CNBr peptides indicate that the peptides are homogeneous. End-group analyses of the CNBr cleavage products assign the 18 000 molecular weight peptide to the NH2-terminal portion and the 1000 molecular weight peptide to the COOH-terminal portion of the native glycoprotein molecule. Pronase digestion of the 36 000 molecular weight glycoprotein, followed by gel filtration and cation exchange chromatography, resulted in two fractions. One fraction was acidic and contained all the carbohydrate, a high content of aspartic acid and no hydroxyproline. The other fraction was basic and contained 8.4% hydroxyproline, 14% proline, 28% glycine and no carbohydrate, suggesting the presence of collagen-like sequence in the peptide chain. Paper electrophoresis of the basic fraction demonstrated two components, the amino acid compositions of which are identical to those of collagen. Partial amino-terminal sequence analysis of one of the CNBr peptides (18 000 molecular weight) indicated the presence of -Fly-Pro-HyP-Gly-sequence in the peptide chain, which confirms our suggestion that collagen-like regions are present in the native glycoprotein molecule. Limited acid hydrolysis of the acidic fraction and subsequent fractionation of the acid hydrolysate using Dowex column yielded a fraction which produced brown colour with ninhydrin reagent. Paper chromatography of this fraction demonstrated a large component which also stained brown with ninhydrin reagent. After acid hydrolysis, this component was found to consist of equal amounts of asparitic acid and glucosamine, indicating that the N-acetylglucosamine of the oligosaccharides is linked to the asparagine residue of the peptide. No serine or threonine linkages are present.  相似文献   

11.
Biosynthesis of skin collagens in normal and diabetic mice.   总被引:4,自引:0,他引:4       下载免费PDF全文
P Kern  M Moczar    L Robert 《The Biochemical journal》1979,182(2):337-345
Synthesis of collagens in vitro was studied on minced mouse skins incubated with [3H]-proline in organ-culture conditions. A comparative study was carried out on genetically diabetic mice (KK strain) and control mice (Swiss strain). After incubation, neutral-salt-soluble and acid-soluble collagens were extracted. The insoluble dermis was digested by pepsin and type I and type III collagens separated by differential precipitation in neutral salt solutions. Type I and Type III collagens were characterized by ion-exchange and molecular-sieve chromatography, amino acid analysis and by the characterization of CNBr peptides. In diabetic-mouse skin, the relative proportion of type III collagen was significantly higher than in control-mouse skin. The incorporation of radioactively labelled proline into hydroxyproline of type III collagen was significantly faster in diabetic-mouse skin than in control-mouse skin.No significant modifications in the total collagen content of the skin or of their rates of synthesis were observed between the two strains. Alteration in the ratio of type III to type I collagen in the diabetic-mouse skin can be interpreted as a sign of alteration of the regulation of collagen biosynthesis and may be related to the structural alterations observed in the diabetic intercellular matrix.  相似文献   

12.
Rat fibrosarcoma induced by subcutaneous injection of methylcholanthrene was found to contain at least three different types of collagen. Two of them were identified as type I and type III collagens, the third (fraction B) seems to be specific for this tumour. The ratio of type I to type III collagen is lower in fibrosarcoma than in normal rat skin. The number of hydroxyproline residues in alpha 1 (I), alpha 2 (I) and alpha 1 (III) chains of tumour collagen appears to be higher than in the corresponding chains of rat skin collagen. Fraction B is composed of three identical alpha chains connected with disulphide bonds. It contains a relatively low amount of glycine: 234 molecules per 1000 residues. The amount of hydroxyproline and cysteine is similar to that found in the type III collagen.  相似文献   

13.
Insoluble collagen was prepared from bovine periodontal ligament. Isolation and characterization of CNBr peptides originating from the alpha1(I), alpha2, and alpha1(III) chains showed that the tissue contained both type I and type III collagens. Further evidence for the presence of type III collagen was obtained by the isolation of alpha1(III) chains from pepsin-treated ligament collagen, with properties similar to those of human alpha1(III) chains. Estimates based on the amounts of certain CNBr peptides indicated that about one-fifth of the collagen of periodontal ligament is type III, the remainder being type I collagen.  相似文献   

14.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

15.
Studies on type I procollagen produced by skin fibroblasts cultured from twins with lethal type II of osteogenesis imperfecta (OI) showed that biosynthesis of collagen (measured by L-[5-(3)H]proline incorporation into proteins susceptible to the action of bacterial collagenase) was slightly increased as compared to the control healthy infant. SDS/PAGE showed that the fibroblasts synthesized and secreted only normal type I procollagen. Electrophoretic analysis of collagen chains and CNBr peptides showed the same pattern of electrophoretic migration as in the controls. The lack of posttranslational overmodification of the collagen molecule suggested a molecular defect near the amino terminus of the collagen helix. Digestion of OI type I collagen with trypsin at 30 degrees C for 5 min generated a shorter than normal alpha2 chain which melted at 36 degrees C. Direct sequencing of an asymmetric PCR product revealed a heterozygous single nucleotide change C-->G causing a substitution of histidine by aspartic acid in the alpha2 chain at position 92. Pericellular processing of type I procollagen by the twin's fibroblasts yielded a later appearance of the intermediate pC-alpha1(I) form as compared with control cells.  相似文献   

16.
It is shown that regions of unreduced, insoluble cow hide collagen, represented by the peptides alpha 1(I)-CB6, alpha 2(I)-CB4 and the alpha 2(I)-CB3,5, are involved in the formation of unreducible acid-stable and mature-type crosslinks. The characteristic ratio of the CNBr peptides in soluble type I collagen was found to be changed in the insoluble collagen of cow hides. The intensity of the bands of alpha 1(I)-CB6, alpha 2(I)-CB4 and alpha 2(I)-CB3,5, shown by dodecyl sulfate polyacrylamide gel electrophoresis, is significantly reduced in such samples, which indicates an involvement of these peptides in crosslink formation. The purified highly polymeric CNBr peptide fraction was also investigated to confirm the participation of the alpha 2 chain of type I collagen in mature crosslink formation. Chymotryptic digests of such material contain peptides which originate from alpha 2(I)-CB4, alpha 2(I)-CB3,5, and alpha 1(I)-CB6. Finally, acid hydrolysates of crosslinked material were screened carefully for crosslinks down to concentrations of 1 in 1000 amino acids. Only two compounds were detected, one identified as "hydroxyaldol-histidine" and the other an as yet unknown compound. These results indicate that both the alpha 1(I) and the alpha 2(I) chains are involved in mature crosslink formation and that the polymeric CNBr peptide fraction contains components crosslinked by so far uncharacterized, nonreducible crosslinks.  相似文献   

17.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

18.
The degree of hydroxylation of the lysine residue located in both alpha(1)- and alpha(2)-chains of collagen in the N-terminal, non-helical telopeptide region of the molecule has been determined in collagen from various sources after isolation of the peptides (alpha(1)- and alpha(2)-CB1) that contain the lysine residue in question and are obtained by cyanogen bromide cleavage of collagen alpha(1)- and alpha(2)-chains respectively. As with collagen from chick tibia, bone collagens from rat tibia and femur and embryonic chick frontal bone, have a high degree of hydroxylation (approx. 50% or more) of the lysine residue in both alpha(1)- and alpha(2)-CB1 peptides. This is in contrast with the lack of hydroxylation of this residue in both alpha(1)- and alpha(2)-chains of all skin collagens so far examined. The presence of hydroxylysine in alpha(1)- and alpha(2)-CB1 peptides from tendon collagen is also indicated. In rat tail tendon collagen the amount of hydroxylation is only slight but in the much less soluble tendon collagen from embryonic chick leg tendons, approximately one-third of the lysine is hydroxylated.  相似文献   

19.
To study how collagen synthesis is regulated in developing chick embryonic skin, hydroxyproline synthesis, incorporation of proline, and translational activity and content of collagen mRNA in 12-, 15-, and 18-day skins were determined and compared with each other. Hydroxyproline synthesis in the 18-day skins was markedly increased over that in the 12-day skins, whereas proline incorporation was moderately increased. The increase in collagen synthesis from day 15 to 18 was accompanied by increases in both the translational activity and the content of type I procollagen mRNA, with a selective increase in the lower-molecular-weight species of pro alpha 1 (I) collagen mRNA. In contrast, the stimulation of collagen synthesis from day 12 to day 15 did not parallel the levels of type I procollagen mRNA. These results suggest that the stimulation of collagen synthesis is regulated by collagen mRNA levels only in the later stage of development (from day 15 to day 18). Both the collagen synthesis and type I procollagen mRNA levels in the fibroblasts isolated on each corresponding day were constant. The difference in collagen synthesis under two different culture conditions suggests that cell-matrix interaction and/or some serum factors, including several growth factors, are essential for the marked stimulation of collagen synthesis observed in 12- to 18-day skin.  相似文献   

20.
The amino acid sequence of 120 residues in the N-terminal region of the alpha1-chain of calf skin collagen (comprising the cyanogen-bromide-derived peptides alpha1-CB2, alpha1-CB4 and alpha1-CB5) has been determined by automated Edman degradation. The lysyl residue in position 87 is completely hydroxylated, while those in positions 99 and 108 partially hydroxylated. Two substitutions are found with respect to the homologous region of the alpha1-chain from rat skin collagen. Positions 101 and 102 of calf skin collagen are occupied by Asp-Ala, in rat skin collagen by Asn-Thr. The extensive homology in this region is remarkable and is not found in other regions of the alpha1 and alpha2-chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号