共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genome-wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex 下载免费PDF全文
Background
The prefrontal cortex is important in regulating sleep and mood. Diurnally regulated genes in the prefrontal cortex may be controlled by the circadian system, by sleep:wake states, or by cellular metabolism or environmental responses. Bioinformatics analysis of these genes will provide insights into a wide-range of pathways that are involved in the pathophysiology of sleep disorders and psychiatric disorders with sleep disturbances. 相似文献4.
5.
Sleep and Biological Rhythms - A high-density oligonucleotide probe array (GeneChip) has been used to learn how gene expression is globally regulated by the circadian clock mechanism. Here I review... 相似文献
6.
7.
8.
Genome-wide expression analysis is rapidly becoming an essential tool for identifying and analysing genes involved in, or controlling, various biological processes ranging from development to responses to environmental cues. The control of cell division involves the temporal expression of different sets of genes, allowing the dividing cell to progress through the different phases of the cell cycle. A landmark study using DNA microarrays to follow the patterns of gene expression in synchronously dividing yeast cells has allowed the identification of several hundreds of genes that are involved in the cell cycle. Although DNA microarrays provide a convenient tool for genome-wide expression analysis, their use is limited to organisms for which the complete genome sequence or a large cDNA collection is available. For other organisms, including most plant species, DNA fragment analysis based methods, such as cDNA-AFLP, provide a more appropriate tool for genome-wide expression analysis. Furthermore, cDNA-AFLP exhibits properties that complement DNA microarrays and, hence, constitutes a useful tool for gene discovery. 相似文献
9.
《Chronobiology international》2013,30(4):486-501
Muscle force production and power output in active males, regardless of the site of measurement (hand, leg, or back), are higher in the evening than in the morning. This diurnal variation is attributed to motivational, peripheral and central factors, and higher core and, possibly, muscle temperatures in the evening. This study investigated whether increasing morning rectal temperatures to evening resting values, by active or passive warm-ups, leads to muscle force production and power output becoming equal to evening values in motivated subjects. Ten healthy active males (mean ± SD: age, 21.2 ± 1.9 yrs; body mass, 75.4 ± 8 kg; height, 1.76 ± .06 m) completed the study, which was approved by the University Ethics Committee. The subjects were familiarized with the techniques and protocol and then completed four sessions (separated by at least 48 h): control morning (07:30 h) and evening (17:30 h) sessions (with an active 5-min warm-up) and then two further sessions at 07:30 h but proceeded by an extended active or passive warm-up to raise rectal temperature to evening values. These last two sessions were counterbalanced in order of administration. During each trial, three measures of handgrip strength, isokinetic leg strength measurements (of knee flexion and extension at 1.05 and 4.19 rad.s?1 through a 90° range of motion), and four measures of maximal voluntary contraction (MVC) on an isometric ergometer (utilizing the twitch-interpolation technique) were performed. Rectal and intra-aural temperatures, ratings of perceived exertion (RPE) and thermal comfort (TC) were measured. Measurements were made after the subjects had reclined for 30 min and after the warm-ups and prior to the measurement of handgrip and isokinetic and isometric ergometry. Muscle temperature was taken after the warm-up and immediately before the isokinetic and MVC measurements. Warm-ups were either active (cycle ergometer at 150 W) or passive (resting in a room at 35°C, relative humidity 45%). Data were analyzed using analysis of variance models with repeated measures. Rectal and intra-aural temperatures were higher at rest in the evening (.56°C and .74°C; p < .05) than in the morning, but there were no differences after the active or passive warm-ups, the subjects' ratings of thermal comfort reflecting this. Muscle temperatures also displayed significant diurnal variation, with higher values in the evening (~.31°C; p < .05). Grip strength, isokinetic knee flexion for peak torque and peak power at 1.05 rad.s?1, and knee extension for peak torque at 4.19 rad.s?1 all showed higher values in the evening. All other measures of strength or power showed a trend to be higher in the evening ( .10 > p > .05). There was no significant effect of active or passive warm-ups on any strength or power variable, and subjects reported maximal values for effort for each strength measure. In summary, effects of time of day were seen in some measures of muscle performance but, in this population of motivated subjects, there was no evidence that increasing morning rectal temperature to evening values by active or passive warm-up increased muscle strength to evening values. (Author correspondence: B. J. Edwards@ljmu. ac. uk) 相似文献
10.
Sainz J García-Alcalde F Blanco A Concha A 《The International journal of developmental biology》2011,55(10-12):995-1006
Embryonic stem cell studies have generated great interest, due to their ability to form a wide variety of matured cells. However, there remains a poor understanding of mechanisms regulating the cell state of embryonic stem cells (ESCs) and of the genes they express during early differentiation. Gene expression analysis may be a valuable tool to elucidate either the molecular pathways involved in self-renewal and pluripotency, or early differentiation and to identify potential molecular therapy targets. The aim of this study was to characterize at the molecular level the undifferentiated mouse ESC state and the early development towards embryoid bodies. To attempt this issue, we performed CodeLink Mouse Uniset I 20K bioarrays in a well-characterized mouse ESC line, MES3, 3- and 7 day-old embryoid bodies and we compared our findings with those in adult tissue cells. Gene expression results were subsequently validated in a commercial stem cell line, CGR8 (ATCC). Significance Analysis of Microarrays (SAM) was used to identify statistically significant changes in microarray data. We identified 3664 genes expressed at significantly greater levels in MES3 stem cells than in adult tissue cells, which included 611 with 3-fold higher gene expression levels versus the adult cells. We also investigated the gene expression profile during early embryoid body formation, identifying 2040 and 2243 genes that were up-regulated in 3- and 7- day-old embryoid bodies, respectively. Our gene expression results in MES3 cells were partially confirmed in CGR8 cells, showing numerous genes that are expressed in both mouse stem cells. In conclusion, our results suggest that commonly expressed genes may be strong candidates for involvement in the maintenance of a pluripotent and undifferentiated phenotype and in early development. 相似文献
11.
12.
Cyclins, cyclin-dependent kinases, and a number of other proteins control the progression of plant cell cycle. Although extensive
studies have revealed the roles of some cell cycle regulators and the underlying mechanisms in Arabidopsis, relatively a small
number of cell cycle regulators were functionally analyzed in rice. In this study, we describe 41 regulators in the rice genome.
Our results indicate that the rice genome contains a less number of the core cell cycle regulators than the Arabidopsis one
does, although the rice genome is much larger than the Arabidopsis one. Eight groups of CDKs similar to those in Arabidopsis
were identified in the rice genome through phylogenetic analysis, and the corresponding members in the different groups include
E2F, CKI, Rb, CKS and Wee. The structures of the core cell regulators were relatively conserved between the rice and Arabidopsis
genomes. Furthermore, the expression of the majority of the core cell cycle genes was spatially regulated, and the most closely
related ones showed very similar patterns of expression, suggesting functional redundancy and conservation between the highly
similar core cell cycle genes in rice and Arabidopsis. Following auxin or cytokinin treatment, the expression of the core
cell cycle genes was either upregulated or downregulated, suggesting that auxin and/or cytokinin may directly regulate the
expression of the core cell cycle genes. Our results provide basic information to understand the mechanism of cell cycle regulation
and the functions of the rice cell cycle genes.
Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.
Jing Guo and Jian Song have contributed equally. 相似文献
13.
《Genomics》2020,112(6):4348-4360
Extensins (EXTs) are major protein components in plant cell walls that play crucial roles in higher plants. The function of EXTs has been reported in several plants but is limited in tomato, especially in fruit ripening. In this study, we identified 83 EXTs in tomato, and divided them into seven groups. The gene intron-exon structure and protein-motif composition of SlEXTs were similar within each group but different among groups. SlEXT genes showed different expression patterns in roots, leaves, flowers and fruits, and some SlEXT gene expressions in flowers could be regulated by treatments of auxin, gibberellic acid and jasmonic acid. In particular, SlSEXT8 had higher and increased expression during tomato fruit ripening, and its expression could be induced by ethylene, suggesting SlSEXT8 may be involved in tomato fruit softening. The result provides insights into the function of EXTs, and will facilitate to further study EXT roles in tomato fruit ripening. 相似文献
14.
15.
16.
《遗传学报》2020,47(1):49-60
Noncoding RNAs(ncRNAs) play important roles in many biological processes and provide materials for evolutionary adaptations beyond protein-coding genes, such as in the arms race between the host and pathogen. However, currently, a comprehensive high-resolution analysis of primate genomes that includes the latest annotated ncRNAs is not available. Here, we developed a computational pipeline to estimate the selections that act on noncoding regions based on comparisons with a large number of reference sequences in introns adjacent to the interested regions. Our method yields result comparable with those of the established codon-based method and phyloP method for coding genes; thus, it provides a holistic framework for estimating the selection on the entire genome. We further showed that fastevolving protein-coding genes and their corresponding 50 UTRs have a significantly lower frequency of the CpG dinucleotides than those evolving at an average pace, and these fast-evolving genes are enriched in the process of immunity and host defense. We also identified fast-evolving miRNAs with antiviral functions in cells. Our results provide a resource for high-resolution evolution analysis of the primate genomes. 相似文献
17.
18.
MADS-box基因是真核生物中一类重要的转录因子,参与调控多项植物的生长发育过程。然而关于谷子穗发育的MADS-box基因研究比较少。本研究使用序列相似性检索,在Phytozome 13.0数据库中筛选并且鉴定出了68个谷子MADS家族成员,并对这些家族成员的物理化学性质、系统发育树、染色体定位、表达谱等进行了全面的分析。结果表明,谷子MADS家族成员在染色体上分布不均匀,可以分为5个亚族。通过组织特异性表达谱分析得到,多数MADS基因在穗中表达量要高于其他器官。此外利用转录组测序技术对发育初期的谷穗和成熟期的谷穗进行了转录组测序分析,筛选到数个与谷穗分生组织发育相关MADS-box基因。为进一步揭示MADS-box基因在谷子穗发育过程中的作用奠定了重要的基础。 相似文献
19.
20.
Identification of 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive genes in mouse liver by serial analysis of gene expression 总被引:2,自引:0,他引:2
Kurachi M Hashimoto S Obata A Nagai S Nagahata T Inadera H Sone H Tohyama C Kaneko S Kobayashi K Matsushima K 《Biochemical and biophysical research communications》2002,292(2):368-377