首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The electric circuit analogy has had a profound influence on how tree physiologists measure, model and think about tree water flow. For example, previous models that attempt to account for changes in saturation use the electric circuit analogy to define capacitance as the change in saturation per change in pressure. Given that capacitance is constant, this relationship implies that subjecting a block of wood to a pressure of -2.5 MPa for 2 min results in the same change in saturation as subjecting the same block to the same pressure for 2 days. Given the definition of capacitance, it is unclear how the electric circuit analogy could be used to predict changes in saturation separately from changes in pressure. The inadequacies in the electric circuit analogy discussed in this paper necessitate a new theory of tree water flow that recognizes the sapwood as being a porous medium and explicitly deals with the full implications of the unsaturated flow occurring in the sapwood. The theory proposed in this paper combines the Cohesion theory with a mathematical theory of multiphase flow through porous media. Based on this theory, both saturated and unsaturated tree water flow models are presented. Previous partial differential equation models of tree water flow based on the electric circuit analogy are shown to be mathematically equivalent to the model of saturated porous flow. The unsaturated model of tree water flow explicitly models the pressure profile and the rates of change in saturation and specific interfacial area (a measure of how the water in the unsaturated sapwood is partitioned between mobile and immobile components). The unsaturated model highlights the differences between saturated and unsaturated flow and the need to measure the variables governing tree water flow at higher spatial and temporal resolutions.  相似文献   

2.
Hydraulic vulnerability of Douglas-fir (Pseudotsuga menziesii) branchlets decreases with height, allowing shoots at greater height to maintain hydraulic conductance (K shoot) at more negative leaf water potentials (Psi l). To determine the basis for this trend shoot hydraulic and tracheid anatomical properties of foliage from the tops of Douglas-fir trees were analysed along a height gradient from 5 to 55 m. Values of Psi l at which K shoot was substantially reduced, declined with height by 0.012 Mpa m(-1). Maximum K shoot was reduced by 0.082 mmol m(-2) MPa(-1) s(-1) for every 1 m increase in height. Total tracheid lumen area per needle cross-section, hydraulic mean diameter of leaf tracheid lumens, total number of tracheids per needle cross-section and leaf tracheid length decreased with height by 18.4 microm(2) m(-1), 0.029 microm m(-1), 0.42 m(-1) and 5.3 microm m(-1), respectively. Tracheid thickness-to-span ratio (tw/b)2 increased with height by 1.04 x 10(-3) m(-1) and pit number per tracheid decreased with height by 0.07 m(-1). Leaf anatomical adjustments that enhanced the ability to cope with vertical gradients of increasing xylem tension were attained at the expense of reduced water transport capacity and efficiency, possibly contributing to height-related decline in growth of Douglas fir.  相似文献   

3.
张琦  苑丹阳  王晓春 《生态学报》2024,44(11):4876-4888
树龄是影响树木生长的最重要因素之一。在气候变暖背景下,利用树干木质部解剖特征,分析不同树龄生长-气候关系,对准确评估树木对气候变化的响应和适应策略、预测气候变化下的森林动态至关重要。利用木材解剖学方法,比较了小兴安岭溪水地区针阔混交林内大、小龄红松(Pinus koraiensis)木质部解剖特征及其对气候变化的响应异同。结果表明:大龄红松主要管胞特征值随年龄增加而呈上升趋势,但小龄红松的变化趋势并不明显,两者均在1840-1890年和1980-2010年间出现剧烈的波动。大、小年龄红松部分管胞特征与气候因子的关系具有一致性,管胞数量和理论导水率分别与月最高温度负相关和正相关;总管胞面积(负相关)、理论导水率(正相关)、平均水力直径(正相关)与月最低温度的关系一致;理论导水率与月总降水正相关;管胞占比、平均管胞面积、理论导水率、平均水力直径均与平均相对湿度正相关,且大龄红松相关性更强。大、小年龄红松管胞特征与气候因子的关系的不一致表现在,大龄红松管胞占比、平均管胞面积、总管胞面积和平均水力直径与月最高温度正相关,而这些关系在小龄红松则表现为负相关。大龄红松管胞数量与7-9月最低温度正相关,而在小龄红松表现为显著负相关;大、小龄红松除理论导水率外其他管胞特征与降水关系基本相反,其中管胞数量的相关性更强;大龄红松与7月、9月、年总降水量显著正相关,而小龄红松与6月和年总降水显著负相关;与月平均相对湿度的相关关系大龄红松表现为正相关或不显著,而小龄红松呈负相关关系。温度是限制大、小龄红松管胞特征生长的主要气候因子,降水的影响相对较弱,平均相对湿度对大小龄红松的影响差异不大。近几十年,小兴安岭地区气候暖干化趋势逐渐增强,这种暖干化会造成大、小龄红松生长的响应差异。若气候持续变暖或加剧,小龄红松会出现严重生长衰退。  相似文献   

4.
Hydraulic conductivities of stems, stipes, and elongate leaf stipes were determined for greenhouse-grown Blechnum (B. fraxineum, B. fragile, B. buchtienii, B. sprucei) and Salpichlaena (S. volubilis) plants collected in tropical rain forests of Costa Rica. Organ conductivity was examined in relation to morphology and tracheid characteristics in order to gain an understanding of factors influencing water flow. Hydraulic conductivity of plant organs was determined by measurement of transpiration rates, leaf areas, and water potential gradients. Erect stemmed species develop larger whole plant water potential gradients than elongate stemmed species for a similar transpiration rate. Elongate leaves develop even smaller water potential gradients for a given transpiration rate. Stems have larger hydraulic conductivities but smaller leaf-specific conductivities (LSCs) than stipes. Small conductivities and small LSCs are associated with short, erect stems. Elongate structures have large conductivities and large LSCs. Of the tracheid characteristics examined, the most important characteristics determining the magnitude of organ hydraulic conductivity are diameter, pit aperture area between tracheids, taper length, and cell length. Large conductivities of S. volubilis climbing leaf stipes are associated with very large-diameter tracheids (some > 200 μm), large tracheid number, exceptionally long tracheids (some > 4 cm), large pit aperture area between tracheids, short tracheid taper, and smooth tracheid lumen walls. Hagen-Poiseuille estimates of hydraulic conductivity range from 1.1 to 3.3 times the measured values. Conductivity of stipes is highly correlated with leaf area supplied by stipes. Conductivities of stems and elongate leaf stipes also correlate with leaf area supplied by these structures. Estimated hydraulic conductivities of field-grown Blechnum and Salpichlaena demonstrate that larger conductivities are associated with larger plants. This study contributes toward our knowledge of fern water relations and extends previous growth form/hydraulic architecture characterizations by providing a more comprehensive comparison of closely related species. In addition, this study provides evidence for the relative importance of tracheid characteristics in determining the magnitude of organ hydraulic conductivity.  相似文献   

5.
Xylem anatomy and water relations were studied in holly fern (Cyrtomium falcatum, Aspidiaceae) to determine the details of the pathway for water flow through an entire plant and the influence of tracheid number and lumen diameter on water flow. Each leaf has two adaxial traces and an abaxial trace, which are supplied by diarch adventitious roots attached to the dictyostele of the rhizome near the leaf base. Anatomical observations and dye experiments showed that each adaxial bundle vascularizes the approximately seven pinnae on its side of a leaf. An abaxial bundle is intermittently connected to an adaxial bundle as well as other abaxial bundles, forming a minor vascular pathway between the bundles of the leaf axis. Changes in both number and diameter of tracheids result in an acropetal decrease in hydraulic conductance per unit length along the rachis, although tracheid number locally increases when the trace for a pinna is produced in an adaxial bundle. Water flow was determined from the transpiration distal to the point in question or by forcing a solution through an axis with applied pressure. The water potential gradient along the plant axis was quite constant, indicating that hydraulic conductance per unit length varied with leaf area to be supplied. About 40% of the overall water potential drop occurred from the rachis into the pinnae, which reflected factors controlling water potential gradients in the lamina and not a very low conductance in the petiolule xylem. Hydraulic conductances calculated using the Hagen-Poiseuille equation and tracheid diameters were generally double those of measured conductances. Since the values tended to vary by a constant factor, tracheid number and diameter may largely control water flow in the xylem.  相似文献   

6.
Just as a soggy paper straw is prone to yielding under the applied suction of a thirsty drinker, the xylem tracheids in leaves seem prone to collapse as water potential declines, impeding their function. Here we describe the collapse, under tension, of lignified cells peripheral to the leaf vein of a broad-leaved rainforest conifer, Podocarpus grayi de Laub. Leaves of Podocarpus are characterized by an array of cylindrical tracheids aligned perpendicular to the leaf vein, apparently involved in the distribution of water radially through the mesophyll. During leaf desiccation the majority of these tracheids collapsed from circular to flat over the water potential range -1.5 to -2.8 MPa. An increase in the percentage of tracheids collapsed during imposed water stress was mirrored by declining leaf hydraulic conductivity (K(leaf)), implying a direct effect on water transport efficiency. Stomata responded to water stress by closing at -2.0 MPa when 45% of cells were collapsed and K(leaf) had declined by 25%. This was still substantially before the initial indications of cavitation-induced loss of hydraulic conductance in the leaf vein, at -3 MPa. Plants droughted until 49% of tracheids had collapsed were found to fully recover tracheid shape and leaf function 1 week after rewatering. A simple mechanical model of tracheid collapse, derived from the theoretical buckling pressure for pipes, accurately predicted the collapse dynamics observed in P. grayi, substantiating estimates of cell wall elasticity and measured leaf water potential. The possible adaptive advantages of collapsible vascular tissue are discussed.  相似文献   

7.
Plant xylem must balance efficient delivery of water to the canopy against protection from air entry into the conduits via air-seeding. We investigated the relationship between tracheid allometry, end wall pitting, safety from air-seeding, and the hydraulic efficiency of conifer wood in order to better understand the trade-offs between effective transport and protection against air entry. Root and stem wood were sampled from conifers belonging to the Pinaceae, Cupressaceae, Podocarpaceae, and Araucariaceae. Hydraulic resistivity of tracheids decreased with increasing tracheid diameter and width, with 64 ± 4% residing in the end wall pitting regardless of tracheid size or phylogenetic affinity. This end-wall percentage was consistent with a near-optimal scaling between tracheid diameter and length that minimized flow resistance for a given tracheid length. There was no evidence that tracheid size and hydraulic efficiency were constrained by the role of the pits in protecting against cavitation by air-seeding. An increase in pit area resistance with safety from cavitation was observed only for species of the northern hemisphere (Pinaceae and Cupressaceae), but this variable was independent of tracheid size, and the increase in pit resistance did not significantly influence tracheid resistance. In contrast to recent work on angiosperm vessels, protection against air-seeding in conifer tracheids appears to be uncoupled from conduit size and conducting efficiency.  相似文献   

8.
Biophysical Model of Xylem Conductance in Tracheids of the Fern Pteris vittata   总被引:13,自引:0,他引:13  
Calkin, H. W., Gibson, A. C. and Nobel, P. S. 1986. Biophysicalmodel of xylem conductance in tracheids of the fern Pteris vittata.—J.exp. Bot. 37: 1054–1064. Water movement in the xylem is often analysed with the Hagen-Poiseuilleequation, which applies to capillaries of specific diameters.However, the predicted hydraulic conductances per unit length(Kh) are generally much higher than measured values and importantanatomical details, such as the pits of tracheids, are ignored.Here, a previous model based on the Hagen-Poiseuille analysisfor water flow in the stipes of Pteris vittata is improved byincorporating the actual lumen transectional shape (usuallyelliptical or ovate) and the tapering that occurs at the endsof its tracheids, as well as using a better method for analysingthe electrical circuit analogues for the pits (pit cavitiesplus pit membranes). The measured Kh was similar to that predictedby the Hagen-Poiseuille equation for narrow stipes with theirsmall tracheids, but was only about half the measured Kh forlarge stipes. Correcting for the actual shape changed Kh 2-to 3-fold for tracheids with elliptic and ovate transections.For the smaller diameter tracheids, most of the flow resistancewas from the lumens but for the larger tracheids most was fromthe pit membranes. For all stipes the pit cavities accountedfor 12–22% of the total resistance. When the pit membraneswere partially digested away with cellulase, Kh increased about66%, consistent with the deduced resistance of this part ofthe pathway. The present model incorporating realistic anatomicaldetails allowed reasonable predictions of the hydraulic conductanceper unit length over a wide size range of stipes for this fern. Key words: Hydraulic conductance, pit, tracheid, xylem  相似文献   

9.
The hydraulic architecture of balsam fir (Abies balsamea)   总被引:1,自引:0,他引:1  
Leaf-specific conductivities (LSCs – hydraulic conductivity per dry weight of supplied leaves). Huber values (transverse sapwood area per dry weight of supplied leaves), specific conductivity (hydraulic conductivity per transverse sapwood area) and tracheid diameters were measured throughout the trunk and crown of 20-year-old trees of Abies balsamca (L.) Mill. Measured specific conductivity was proportional to the radius to the fourth power of tracheids. LSCs, which indicate the relative water availability to different plant parts, are much higher in the trunk than in first order branches, and lowest in second order branches. The structural basis for this "hydraulic hierarchy" lies both in Huber values and in tracheid diameters. For similar diameter stem segments, there was no statistically significant difference for trunks versus branches in specific conductivity. However, in old parts of the tree, trunks are wider than supported branches and producer wider tracheids resulting in greater specific conductivities than in branches. In vigorous trees with strong apical control, Huber values were 12.0 times greater in the trunk than in similar diameter branch segments. In slow-growing trees with weak apical control, Huber values were 2.2 times greater in the trunk versus similar branch segments.  相似文献   

10.
A model of xylem conduit function was applied to gymnosperm tracheids with torus-margo pit membranes for comparison with angiosperm vessels. Tracheids from 17 gymnosperm tree species with circular bordered pits and air-seed pressures from 0.8 to 11.8 MPa were analyzed. Tracheids were more reinforced against implosion than vessels, consistent with their double function in transport and support. Tracheid pits were 3.3 to 44 times higher in hydraulic conductivity than vessel pits because of greater membrane conductivity of the torus-margo configuration. Tight scaling between torus and pit size maximized pit conductivity. Higher pit conductivity allowed tracheids to be 1.7-3.4 times shorter than vessels and still achieve 95% of their lumen-limited maximum conductivity. Predicted tracheid lengths were consistent with measured lengths. The torus-margo structure is important for maximizing the conductivity of the inherently length-limited tracheid: replacing the torus-margo membrane with a vessel membrane caused stem tracheid conductivity to drop by 41%. Tracheids were no less hydraulically efficient than vessels if they were long enough to reach their lumen-limiting conductivity. However, this may only be possible for lumen diameters below approximately 60-70 μm.  相似文献   

11.
Hydraulic impairment due to xylem embolism and carbon starvation are the two proposed mechanisms explaining drought‐induced forest dieback and tree death. Here, we evaluate the relative role played by these two mechanisms in the long‐term by quantifying wood‐anatomical traits (tracheid size and area of parenchyma rays) and estimating the intrinsic water‐use efficiency (iWUE) from carbon isotopic discrimination. We selected silver fir and Scots pine stands in NE Spain with ongoing dieback processes and compared trees showing contrasting vigour (declining vs nondeclining trees). In both species earlywood tracheids in declining trees showed smaller lumen area with thicker cell wall, inducing a lower theoretical hydraulic conductivity. Parenchyma ray area was similar between the two vigour classes. Wet spring and summer conditions promoted the formation of larger lumen areas, particularly in the case of nondeclining trees. Declining silver firs presented a lower iWUE than conspecific nondeclining trees, but the reverse pattern was observed in Scots pine. The described patterns in wood anatomical traits and iWUE are coherent with a long‐lasting deterioration of the hydraulic system in declining trees prior to their dieback. Retrospective quantifications of lumen area permit to forecast dieback in declining trees 2–5 decades before growth decline started. Wood anatomical traits provide a robust tool to reconstruct the long‐term capacity of trees to withstand drought‐induced dieback.  相似文献   

12.
Climate change is likely to have major impacts on the distribution of planted and natural forests. Herein, we demonstrate how a process‐based niche model (CLIMEX) can be extended to globally project the potential habitat suitable for Douglas‐fir. Within this distribution, we use CLIMEX to predict abundance of the pathogen P haeocryptopus gaeumannii and severity of its associated foliage disease, Swiss needle cast. The distribution and severity of the disease, which can strongly reduce growth rate of Douglas‐fir, is closely correlated with seasonal temperatures and precipitation. This model is used to project how climate change during the 2080s may alter the area suitable for Douglas‐fir plantations within New Zealand. The climate change scenarios used indicate that the land area suitable for Douglas‐fir production in the North Island will be reduced markedly from near 100% under current climate to 36–64% of the total land area by 2080s. Within areas shown to be suitable for the host in the North Island, four of the six climate change scenarios predict substantial increases in disease severity that will make these regions at best marginal for Douglas‐fir by the 2080s. In contrast, most regions in the South Island are projected to sustain relatively low levels of disease, and remain suitable for Douglas‐fir under climate change over the course of this century.  相似文献   

13.
We evaluate genetic test plantations of North American Douglas‐fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta‐analysis is based on long‐term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north–south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas‐fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas‐fir provenances in plantation forestry throughout Western and Central Europe.  相似文献   

14.
Research related to the allometric relationships of tree height and projected tree crown area to diameter at breast height was conducted to look at the biological suitability and timber production potential of Douglas fir under the conditions present in central Europe. The dependence of allometric relationships on soil nutrient conditions were described in forest stands of Douglas fir and Norway spruce. The studied sites were climatically similar but differed in soil nutrient availability. A significant difference was found in the allometric relationships of Norway spruce trees from the nutrient poor and nutrient rich site. In contrast to the Norway spruce, there was no significant effect of site fertility on allometric relationships for Douglas fir suggesting that its allocation patterns were less sensitive to site nutrient conditions. Stem growth increment, which was measured weekly during two consecutive seasons for both species, was related to the weather conditions and available soil moisture. Stem growth of Douglas fir began about 2 weeks earlier than in the Norway spruce at both sites. At the nutrient rich site, most of the stem growth of both species occurred at the beginning of the season, while growth at the other site was more evenly distributed throughout the season. Data obtained in this study will be useful for modeling stem growth and analysis of water use efficiency of these two tree species.  相似文献   

15.
Mechanistic understanding of tree-ring formation and its modelling requires a cellular-based and spatially organized characterization of a tree ring, moving from whole rings, to intra-annual growth zones and individual cells. A tracheidogram is a radial profile of conifer anatomical features, such as lumen area and cell wall thickness, of sequentially- and positionally-ranked tracheids. However, its construction is tedious and time-consuming since image-analysis-based measurements do not recognize the position of cells within a radial file, and present-day tracheidograms must be constructed manually.Here we present the R-package RAPTOR that complements tracheid anatomical data obtained from quantitative wood anatomy software (e.g., ROXAS, WinCELL, ImageJ), with the specific positional information necessary for the automated construction of tracheidograms. The package includes functions to read and visualize tracheid anatomical data, and uses local search algorithms to ascribe a ranked position to each tracheid in identified radial files. The package also provides functions to ensure that tracheids are adequately aligned for identifying the first tracheid in each radial file, and obtaining the correct ranking of tracheids along each radial file. Additional functions allow automating the analyses for multiple samples and rings (batch mode) and exporting data and plots for quality control.RAPTOR allows tracheidogram users to take advantage of the latest generation of cell anatomical measuring systems. With this R-package we aim to facilitate the construction of more robust and versatile tracheidograms for the benefit of the research community.  相似文献   

16.
Predicted increases in the frequency and duration of drought are expected to negatively affect tree vitality, but we know little about how water shortage will influence needle anatomy and thereby the trees’ photosynthetic and hydraulic capacity. In this study, we evaluated anatomical changes in sun and shade needles of 20‐year‐old Norway spruce trees exposed to artificial drought stress. Canopy position was found to be important for needle structure, as sun needles had significantly higher values than shade needles for all anatomical traits (i.e., cross‐sectional needle area, number of tracheids in needle, needle hydraulic conductivity, and tracheid lumen area), except proportion of xylem area per cross‐sectional needle area. In sun needles, drought reduced all trait values by 10–40%, whereas in shade needles, only tracheid maximum diameter was reduced by drought. Due to the relatively weaker response of shade needles than sun needles in drought‐stressed trees, the difference between the two needle types was reduced by 25% in the drought‐stressed trees compared to the control trees. The observed changes in needle anatomy provide new understanding of how Norway spruce adapts to drought stress and may improve predictions of how forests will respond to global climate change.  相似文献   

17.
Tree encroachment in fire‐maintained woodlands and grasslands is a major management concern, yet little information exists regarding the mechanisms of small tree mortality following prescribed burns. We sought to clarify the relative importance of tree size and fire‐induced injury in the post‐fire mortality of encroaching Douglas‐fir trees and to compare results with an existing mortality model for larger Douglas‐fir trees. Crown injury to small Douglas‐fir trees was a significant explanatory variable in post‐fire mortality models, with results suggesting a 20% threshold in crown scorch. Crown injury was strongly related to bole injury, and delayed mortality was important as we documented new mortality 20 months post‐burn. Mortality models for large Douglas‐fir tend to over‐predict small tree mortality, underscoring the need to better understand the mechanisms of fire‐caused mortality for small, encroaching trees.  相似文献   

18.
Swiss needle cast (SNC) is a fungal disease of Douglas‐fir (Pseudotsuga menziesii) that has recently become prevalent in coastal areas of the Pacific Northwest. We used growth measurements and stable isotopes of carbon and oxygen in tree‐rings of Douglas‐fir and a non‐susceptible reference species (western hemlock, Tsuga heterophylla) to evaluate their use as proxies for variation in past SNC infection, particularly in relation to potential explanatory climate factors. We sampled trees from an Oregon site where a fungicide trial took place from 1996 to 2000, which enabled the comparison of stable isotope values between trees with and without disease. Carbon stable isotope discrimination (Δ13C) of treated Douglas‐fir tree‐rings was greater than that of untreated Douglas‐fir tree‐rings during the fungicide treatment period. Both annual growth and tree‐ring Δ13C increased with treatment such that treated Douglas‐fir had values similar to co‐occurring western hemlock during the treatment period. There was no difference in the tree‐ring oxygen stable isotope ratio between treated and untreated Douglas‐fir. Tree‐ring Δ13C of diseased Douglas‐fir was negatively correlated with relative humidity during the two previous summers, consistent with increased leaf colonization by SNC under high humidity conditions that leads to greater disease severity in following years.  相似文献   

19.
Psilotum nudum (L.) Beauv. (Psilotopsida) has a simple, vascularized sporophyte with a dichotomously branching aerial axis. The number and lumen diameters of tracheids in the actinostele decrease in each subsequent branch, leading to an approximate halving of the measured hydraulic conductance (Kh) from segment to segment. To understand how the anatomy of P. nudum affects Kh, a biophysical model based on the Hagen-Poiseuille relation was developed that incorporated lumen diameter, tracheid taper, pit cavities, and pit membranes. Using a technique previously developed for ferns, pit membrane resistance was determined by measuring water flow before and after dissolving the pit membranes with cellulase. Measured Kh was in good agreement with Kh calculated with the model after excluding thick-walled late metaxylem tracheids that dye studies showed were nonconducting. Model simulations showed that the approximately 40% overlap observed for tracheids of P. nudum was in the range leading to greatest conductance and that Kh decreased to half for 20% overlap. The model also showed that the pit membranes account for an increasing percentage of total resistance to water flow as the lumen diameter increases. Thus, the removal of such primary wall material and the evolutionary origin of vessels would have substantially increased Kh.  相似文献   

20.
Climate change is likely to result in novel conditions with no analogy to current climate. Therefore, the application of species distribution models (SDMs) based on the correlation between observed species’ occurrence and their environment is questionable and calls for a better understanding of the traits that determine species occurrence. Here, we compared two intraspecific, trait‐based SDMs with occurrence‐based SDMs, all developed from European data, and analyzed their transferability to the native range of Douglas‐fir in North America. With data from 50 provenance trials of Douglas‐fir in central Europe multivariate universal response functions (URFs) were developed for two functional traits (dominant tree height and basal area) which are good indicators of growth and vitality under given environmental conditions. These trials included 290 North American provenances of Douglas‐fir. The URFs combine genetic effects i.e. the climate of provenance origin and environmental effects, i.e. the climate of planting locations into an integrated model to predict the respective functional trait from climate data. The URFs were applied as SDMs (URF‐SDMs) by converting growth performances into occurrence. For comparison, an ensemble occurrence‐based SDM was developed and block cross validated with the BIOMOD2 modeling platform utilizing the observed occurrence of Douglas‐fir in Europe. The two trait based SDMs and the occurrence‐based SDM, all calibrated with data from Europe, were applied to predict the known distribution of Douglas‐fir in its introduced and native range in Europe and North America. Both models performed well within their calibration range in Europe, but model transfer to its native range in North America was superior in case of the URF‐SDMs showing similar predictive power as SDMs developed in North America itself. The high transferability of the URF‐SDMs is a testimony of their applicability under novel climatic conditions highlighting the role of intraspecific trait variation for adaptation planning in climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号