首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
线粒体电压依赖性阴离子通道及其调控功能   总被引:1,自引:0,他引:1  
电压依赖性阴离子通道(voltage-dependent anion channel,VDAC)是存在于线粒体外膜上的31kDa膜蛋白,能在膜上形成亲水性通道,调控阴离子、阳离子、ATP以及其他代谢物进出线粒体,在调节细胞代谢、维持胞内钙稳态,调节细胞凋亡和坏死等过程中发挥重要功能。现就VDAC的结构、特性、活性调节及对细胞功能的调控作一综述。  相似文献   

2.
本研究探讨了外源性C2-神经酰胺诱导入结肠癌HT-29细胞凋亡中,线粒体膜间隙凋亡蛋白的释放机制.不同浓度C2-神经酰胺作用HT-29细胞,流式细胞仪检测线粒体膜电位(△ψm),线粒体/细胞液分离试剂盒分离亚细胞成分,聚丙烯酰胺凝胶电泳检测细胞色素C(Cytc)、高温必需蛋白A2(HtrA2)、线粒体源性半胱天冬氨酸蛋白酶第二活化因子(Smac)、凋亡抑制蛋白(XtAP)和半胱天冬氨酸蛋白酶-3(Caspase-3)蛋白表达水平.实验结果显示25和50μmol/L C2-神经酰胺作用细胞6h,△ψm即开始下降(P〈0.05),且环孢霉素能通过调节线粒体膜通透性转换孔抑制△ψm的下降.C2-神经酰胺对Cyt c,HtrA2和Smac总蛋白表达没有明显影响,但能诱导Cyt c,HtrA2和Smac从线粒体释放入细胞液中,并下调XIAP蛋白的表达及活化Caspase-3.在Caspase抑制剂存在下,C2-神经酰胺仍能诱导Cyt c和HtrA2从线粒体释放,但不能诱导Smac释放.因此认为C2-神经酰胺能通过线粒体凋亡通路诱导HT-29细胞凋亡,C2-神经酰胺诱导Cytc和HtrA2从线粒体的释放是Caspase非依赖性的,而Smac释放是Caspase依赖性的.  相似文献   

3.
线粒体凋亡途径的研究进展   总被引:5,自引:0,他引:5  
周建奖 《生命的化学》2002,22(6):506-509
线粒体凋亡途径是细胞凋亡的主要途径之一。是目前研究凋亡的热点,各种凋亡刺激信号通过BH3(Bcl-2homology domain3)-only蛋白引起Bax(Bcl-2-asslciated proteinX)蛋白移位到线粒体外膜并多聚化,形成膜通道,刺激线粒体释放细胞色素C(CytC)和Smac(second mitochondrial-derived activator of caspase),CytC通过Apaf-1因子的多聚化与胱天蛋白酶(caspases)-9形成凋亡小体,导致下游胱天蛋白酶的级联反应,而凋亡蛋白抑制因子(IAP)和Smac通过抑制和促进胱天蛋白酶的级联反应来调控细胞凋亡。  相似文献   

4.
BcL2蛋白质家族——定位与转位   总被引:4,自引:0,他引:4  
Bcl-2蛋白质家族的抗凋亡和促凋亡成员,在线粒体水平上决定细胞的存活或死亡.在正常细胞中,这些成员呈现功能适应性的细胞内分布;抗凋亡成员主要定位于细胞内膜系特别是线粒体外膜上:但绝大多数促凋亡成员主要分布于细胞浆中.细胞接受死亡信号后,Bcl-2家族成员本身受到一系列的调节,如磷酸化、裂解、蛋白质-蛋白质相互作用等,结果之一是促凋亡成员发生细胞内定位的改变,从细胞浆转位于线粒体膜上,并引发线粒体功能异常及其内外膜间致凋亡因子的释放,最终导致细胞凋亡.  相似文献   

5.
大鼠心肌线粒体内、外膜磷脂动态结构的研究   总被引:4,自引:2,他引:2  
我们以DPH为荧光探针.用毫微秒荧光分光光度计测定了大鼠心肌线粒体及线粒体内、外膜的动态微细结构;用HPLC分析了磷脂组成.实验结果提示.完整线粒体膜流动性主要反映了线粒体外膜的运动状态.线粒体内膜微粘度及磷脂分子摇动角大于外膜,扩散速率小于外膜.除去了蛋白质的线粒体内、外膜磷脂脂质体膜流动性无明显差异.提示线粒体内膜的高微粘度与膜中所含有的多量蛋白有关.  相似文献   

6.
线粒体双层膜的完整性是细胞存活的关键因素,其遭到破坏后会使细胞发生凋亡、焦亡或炎症。线粒体膜的破坏包括线粒体外膜通透、线粒体内膜通透、通透性转换,三者可通过调控不同的信号通路导致不同的细胞命运。然而,这些信号通路之间存在交叉关联,使得线粒体膜对细胞命运的调控错综复杂,导致人们对其机制缺乏清晰的认识。本综述首先分析了不同程度线粒体外膜通透在细胞存活、癌变或凋亡中的作用,接着讨论了线粒体内膜通透通过引发线粒体DNA释放促进炎症发生的分子机制,然后阐述了线粒体通透性转换引发焦亡的作用机制,最后总结出线粒体膜完整性影响细胞命运决策的内在关联。深入了解线粒体膜完整性调控细胞命运的分子动力学机制,有助于为癌症和神经退行性疾病的诊疗提供思路。  相似文献   

7.
线粒体在控制细胞死亡中的作用   总被引:3,自引:0,他引:3  
细胞死亡由细胞坏死或细胞凋亡所致。细胞坏死时 ,细胞质膜形成疱 (突起 ) ,疱破裂释放细胞内容物 ;细胞凋亡时 ,细胞内容物不释放到细胞外。细胞坏死时 ,细胞内ATP耗竭 ;凋亡时 ,细胞需利用ATP完成凋亡过程。1.线粒体外膜释放凋亡活性物质细胞凋亡过程中 ,原先位于线粒体膜间隙的某些与凋亡有关的活性物质释放到胞液中 ,这些物质包括细胞色素c(Cytc)、凋亡诱导因子 (apoptosis inducingfactor ,AIF)、线粒体胱天蛋白酶 (caspase)2 ,3,9、hsp10、hsp6 0、Bcl 2家族成员等。细胞受到凋…  相似文献   

8.
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻性黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

9.
张蕾  于锋 《生物磁学》2014,(3):586-589
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻陛黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

10.
细胞色素c的前体 -脱血红素细胞色素c(Apocyt.c)在细胞质中核糖体合成 ,之后跨线粒体膜运送 ,在线粒体内、外膜间隙中经酶催化与血红素Heme结合形成成熟型的细胞色素c定位于线粒体内膜外侧  相似文献   

11.
Recent evidence suggests that the ability of ceramides to induce apoptosis is due to a direct action on mitochondria. Mitochondria are known to contain enzymes responsible for ceramide synthesis and hydrolysis and mitochondrial ceramide levels have been shown to be elevated prior to the mitochondrial phase of apoptosis. Ceramides have been reported to induce the release of intermembrane space proteins from mitochondria, which has been linked to their ability to form large channels in membranes. The aim of this study was to determine if the membrane concentration of ceramide required for the formation of protein permeable channels is within the range that is present in mitochondria during the induction phase of apoptosis. Only a very small percentage of the ceramide actually inserts into the mitochondrial membranes. The permeability of the mitochondrial outer membrane correlates directly with the level of ceramide in the membrane. Importantly, the concentration of ceramide at which significant channel formation occurs is consistent with the level of mitochondrial ceramide that occurs during the induction phase of apoptosis (4 pmol ceramide/nanomole phospholipid). Similar results were obtained with short- and long-chain ceramide. Ceramide channel formation is specific to mitochondrial membranes in that no channel formation occurs in the plasma membranes of erythrocytes even at concentrations 20 times higher than those required for channel formation in mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway by which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

12.
Marco Colombini 《BBA》2010,1797(6-7):1239-1244
A key, decision-making step in apoptosis is the release of proteins from the mitochondrial intermembrane space. Ceramide can self-assemble in the mitochondrial outer membrane to form large stable channels capable of releasing said proteins. Ceramide levels measured in mitochondria early in apoptosis are sufficient to form ceramide channels in the outer membrane. The channels are in dynamic equilibrium with non-conducting forms of ceramide in the membrane. This equilibrium can be strongly influenced by other sphingolipids and Bcl-2 family proteins. The properties of ceramide channels formed in a defined system, planar phospholipid membranes, demonstrate that proteins are not required for channel formation. In addition, experiments in the defined system reveal structural information. The results indicated that the channels are barrel-like structures whose staves are ceramide columns that span the membrane. Ceramide channels are good candidates for the protein release pathway that initiates the execution phase of apoptosis.  相似文献   

13.
Mitochondrial Ceramide and the Induction of Apoptosis   总被引:11,自引:0,他引:11  
In most cell types, a key event in apoptosis is the release of proapoptotic intermembrane space proteins from mitochondria to the cytoplasm. In general, it is the release of these intermembrane space proteins that is responsible for the activation of caspases and DNases that are responsible for the execution of apoptosis. The mechanism for the increased permeability of the mitochondrial outer membrane during the induction phase of apoptosis is currently unknown and highly debated. This review will focus on one such proposed mechanism, namely, the formation of ceramide channels in the mitochondrial outer membrane. Ceramides are known to play a major regulatory role in apoptosis by inducing the release of proapoptotic proteins from the mitochondria. As mitochondria are known to contain the enzymes responsible for the synthesis and hydrolysis of ceramide, there exists a mechanism for regulating the level of ceramide in mitochondria. In addition, mitochondrial ceramide levels have been shown to be elevated prior to the induction phase of apoptosis. Ceramide has been shown to form large protein permeable channels in planar phospholipid and mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway with which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

14.
Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are released. Here, we report that sphingosine, a product of ceramide hydrolysis by ceramidase, is capable of destabilizing ceramide channels, leading to their disassembly. Sphingosine is directly responsible for the disassembly of ceramide channels in planar membrane experiments and markedly reduces the ability of ceramide to induce the release of intermembrane space proteins from mitochondria in vitro. Low concentrations of both L and D sphingosine potentiate the release of intermembrane space proteins by long-chain ceramide and channel formation in liposomes. These results provide evidence for a mechanism by which the disassembly of ceramide channels, as initiated by ceramidase, could be accelerated by the direct interaction of the hydrolysis product with the ceramide channels themselves. This mechanism therefore could form a positive feedback loop for rapid shut-down of ceramide channels. However, potentiation of ceramide channel formation is also possible and thus both effects could influence the propensity for mitochondria-mediated apoptosis.  相似文献   

15.
Early in mitochondria-mediated apoptosis, the mitochondrial outer membrane becomes permeable to proteins that, when released into the cytosol, initiate the execution phase of apoptosis. Proteins in the Bcl-2 family regulate this permeabilization, but the molecular composition of the mitochondrial outer membrane pore is under debate. We reported previously that at physiologically relevant levels, ceramides form stable channels in mitochondrial outer membranes capable of passing the largest proteins known to exit mitochondria during apoptosis (Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Mitochondrion 6, 118-125). Here we show that Bcl-2 proteins are not required for ceramide to form protein-permeable channels in mitochondrial outer membranes. However, both recombinant human Bcl-x(L) and CED-9, the Caenorhabditis elegans Bcl-2 homologue, disassemble ceramide channels in the mitochondrial outer membranes of isolated mitochondria from rat liver and yeast. Importantly, Bcl-x L and CED-9 disassemble ceramide channels in the defined system of solvent-free planar phospholipid membranes. Thus, ceramide channel disassembly likely results from direct interaction with these anti-apoptotic proteins. Mutants of Bcl-x L act on ceramide channels as expected from their ability to be anti-apoptotic. Thus, ceramide channels may be one mechanism for releasing pro-apoptotic proteins from mitochondria during the induction phase of apoptosis.  相似文献   

16.
Among the permeability pathways in the mitochondrial outer membrane (MOM), whose elucidation was pioneered by Kathleen Kinnally, there is one formed by the lipid, ceramide. Electron microscopic visualization shows that ceramide channels are large cylindrical structures of varying pore size, with a most frequent size of 10 nm in diameter, large enough to allow all soluble proteins to translocate between the cytosol and the mitochondrial intermembrane space. Similar results were obtained with electrophysiological measurements. Studies of the dynamics of the channels are consistent with a right cylinder. Ceramide channels form at mole fractions of ceramide that are found in the MOM early in the apoptotic process, before or at the time of protein release from mitochondria. That these channels are good candidates for the protein release pathway is supported by the fact that channel formation is inhibited by anti-apoptotic proteins and favored by Bax. Bcl-xL inhibits ceramide channel formation by binding to the apolar ceramide tails using its hydrophobic grove. Bax interaction with the polar regions of ceramide results in MOM permeabilization through synergy with ceramide. Evidence that ceramide channels actually function to favor apoptosis in vivo is supported by the expression of Bcl-xL containing point mutations in cells induced to undergo apoptosis. The Bcl-xL mutants inhibit differentially Bax and ceramide channels and thus tease apart, to some extent, these two modes of MOM permeabilization. Ceramide channels have the right properties and appropriate regulation to be key players in the induction of apoptosis.  相似文献   

17.
Early in apoptosis, ceramide levels rise and the mitochondrial outer membrane becomes permeable to small proteins. The self-assembly of ceramide to form channels could be the means by which intermembrane space proteins are released to induce apoptosis. Dihydroceramide desaturase converts dihydroceramide to ceramide. This conversion may be removing an inhibitor as well as generating a pro-apoptotic agent. We report that both long and short chain dihydroceramides inhibit ceramide channel formation in mitochondria. One tenth as much dihydroceramide was sufficient to inhibit the permeabilization of the outer membrane by about 95% (C2) and 51% (C16). Similar quantities inhibited the release of carboxyfluorescein from liposomes indicating that other mitochondrial components are not necessary for the inhibition. The apoptogenic activity of ceramide may thus depend on the ceramide to dihydroceramide ratio resulting in a more abrupt transition from the normal to the apoptotic state when the de novo pathway is used in mitochondria.  相似文献   

18.
A critical step in apoptosis is mitochondrial outer membrane permeabilization (MOMP), releasing proteins critical to downstream events. While the regulation of this process by Bcl-2 family proteins is known, the role of ceramide, which is known to be involved at the mitochondrial level, is not well-understood. Here, we demonstrate that Bax and ceramide induce MOMP synergistically. Experiments were performed on mitochondria isolated from both rat liver and yeast (lack mammalian apoptotic machinery) using both a protein release assay and real-time measurements of MOMP. The interaction between activated Bax and ceramide was also studied in a defined isolated system: planar phospholipid membranes. At concentrations where ceramide and activated Bax have little effects on their own, the combination induces substantial MOMP. Direct interaction between ceramide and activated Bax was demonstrated both by using yeast mitochondria and phospholipid membranes. The apparent affinity of activated Bax for ceramide increases with ceramide content indicating that activated Bax shows enhanced propensity to permeabilize in the presence of ceramide. An agent that inhibits ceramide-induced but not activated Bax induced permeabilization blocked the enhanced MOMP, suggesting that ceramide is the key permeabilizing entity, at least when ceramide is present. These and previous findings that anti-apoptotic proteins disassemble ceramide channels suggest that ceramide channels, regulated by Bcl-2-family proteins, may be responsible for the MOMP during apoptosis.  相似文献   

19.
Ceramide is a key lipid mediator of cellular processes such as differentiation, proliferation, growth arrest and apoptosis. During apoptosis, ceramide is produced within the plasma membrane. Although recent data suggest that the generation of intracellular ceramide increases mitochondrial permeability, the source of mitochondrial ceramide remains unknown. Here, we determine whether a stress-mediated plasmalemmal pool of ceramide might become available to the mitochondria of apoptotic cells. We have previously established annexin A1--a member of a family of Ca(2+) and membrane-binding proteins--to be a marker of ceramide platforms. Using fluorescently tagged annexin A1, we show that, upon its generation within the plasma membrane, ceramide self-associates into platforms that subsequently invaginate and fuse with mitochondria. An accumulation of ceramide within the mitochondria of apoptotic cells was also confirmed using a ceramide-specific antibody. Electron microscopic tomography confirmed that upon the formation of ceramide platforms, the invaginated regions of the plasma membrane extend deep into the cytoplasm forming direct physical contacts with mitochondrial outer membranes. Ceramide might thus be directly transferred from the plasma membrane to the mitochondrial outer membrane. It is conceivable that this "kiss-of-death" increases the permeability of the mitochondrial outer membrane thereby triggering apoptosis.  相似文献   

20.
Increased mitochondrial ceramide levels are associated with the initiation of apoptosis. There is evidence that ceramide is causal. Thus, the conversion of the precursor, dihydroceramide, to ceramide by the enzyme dihydroceramide desaturase may be important in preparing the cell for apoptosis. Ceramide can initiate apoptosis by permeabilizing the mitochondrial outer membrane to apoptosis-inducing proteins. However, the mitochondrion's ability to produce ceramide may be limited by its proteome. Here, we show that ceramide synthesized in isolated mammalian endoplasmic reticulum (ER) vesicles from either C8-dihydroceramide or sphingosine to produce long-chain ceramide can transfer to isolated mitochondria. The rate of transfer is consistent with a simple collision model. The transfer of the long-chain ceramide is faster than expected for an uncatalyzed process. Sufficient ceramide is transferred to permeabilize the outer membrane to cytochrome c and adenylate kinase. The mitochondria-associated membranes, ER-like membranes that are tightly associated with isolated mitochondria, can produce enough ceramide to permeabilize the outer membrane transiently. Thus, this ceramide exchange obviates the need for a complete ceramide de novo pathway in mitochondria to increase ceramide levels to the critical value required for functional changes, such as ceramide channel self-assembly followed by protein release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号