首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Expression of the sulfonamide resistance gene from plasmid R46   总被引:5,自引:0,他引:5  
  相似文献   

4.
This paper presents the nucleotide sequence of the mod-res operon of phage P1, which encodes the two structural genes for the EcoP1 type III restriction and modification system. We have also sequenced the mod gene of the allelic EcoP15 system. The mod gene product is responsible for binding the system-specific DNA recognition sequences in both restriction and modification; it also catalyses the modification reaction. A comparison of the two mod gene product sequences shows that they have conserved amino and carboxyl ends but have completely different sequences in the middle of the molecules. Two alleles of the EcoP1 mod gene that are defective in modification but not in restriction were also sequenced. The mutations in both alleles lie within the non-conserved regions.  相似文献   

5.
Organisation of the regulatory region of the Escherichia coli melibiose operon   总被引:13,自引:0,他引:13  
C Webster  K Kempsell  I Booth  S Busby 《Gene》1987,59(2-3):253-263
  相似文献   

6.
7.
D N Rao  H Eberle    T A Bickle 《Journal of bacteriology》1989,171(5):2347-2352
This study characterized several mutations of the bacteriophage P1 mod gene. This gene codes for the subunit of the EcoP1 restriction enzyme that is responsible for DNA sequence recognition and for modification methylation. We cloned the mutant mod genes into expression vectors and purified the mutant proteins to near homogeneity. Two of the mutant mod genes studied were the c2 clear-plaque mutants described by Scott (Virology 41:66-71, 1970). These mutant proteins can recognize EcoP1 sites in DNA and direct restriction but are unable to modify DNA. Methylation assays as well as S-adenosylmethionine (SAM) binding studies showed that the c2 mutants are methylation deficient because they do not bind SAM, and we conclude that the mutations destroy the SAM-binding site. Both of the c2 mutations lie within a region of the EcoP1 mod gene that is not conserved when compared with the mod gene of the related EcoP15 system. EcoP15 and EcoP1 recognize different DNA sequences, and we believe that this region of the protein may code for the DNA-binding site of the enzyme. The other mutants characterized were made by site-directed mutagenesis at codon 240. Evidence is presented that one of them, Ser-240----Pro, simultaneously lost the capacity to bind SAM and may also have changed its DNA sequence specificity.  相似文献   

8.
9.
Regulation of transcription of the Bacillus subtilis spoIIA locus   总被引:35,自引:30,他引:5       下载免费PDF全文
  相似文献   

10.
11.
12.
13.
14.
15.
16.
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.  相似文献   

17.
18.
19.
Q W Xie  C W Tabor    H Tabor 《Journal of bacteriology》1989,171(8):4457-4465
Two enzymes, S-adenosylmethionine decarboxylase and spermidine synthase, are essential for the biosynthesis of spermidine in Escherichia coli. We have previously shown that the genes encoding these enzymes (speD and speE) form an operon and that the area immediately upstream from the speE gene is necessary for the expression of both the speE and speD genes. We have now studied the upstream promoter and the downstream terminator regions of this operon more completely. We have shown that the major mRNA initiation site (Ia) of the operon is located 475 base pairs (bp) upstream from the speE gene and that there is an open reading frame that encodes for a polypeptide of 115 amino acids between the Ia site and the ATG start codon for the speE gene. Downstream from the stop codon for the speD gene is a potential hairpin structure immediately followed by an mRNA termination site, t. An additional mRNA termination site, t', is present about 110 bp downstream from t and is stronger than t. By comparing our DNA fragments with those prepared from this region of the E. coli chromosome by Kohara et al., we have located the speED operon on the physical map of the E. coli chromosome. We have shown that the orientation of the speED operon is counterclockwise and that the operon is located 137.5 to 140 kbp (2.9 minutes) clockwise from the zero position of the E. coli chromosomal map.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号