首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatic stem cells mediate tissue maintenance for the lifetime of an organism. Despite the well-established longevity that is a prerequisite for such function, accumulating data argue for compromised stem cell function with age. Identifying the mechanisms underlying age-dependent stem cell dysfunction is therefore key to understanding the aging process. Here, using a model carrying a proofreading-defective mitochondrial DNA polymerase, we demonstrate hematopoietic defects reminiscent of premature HSC aging, including anemia, lymphopenia, and myeloid lineage skewing. However, in contrast to physiological stem cell aging, rapidly accumulating mitochondrial DNA mutations had little functional effect on the hematopoietic stem cell pool, and instead caused distinct differentiation blocks and/or disappearance of downstream progenitors. These results show that intact mitochondrial function is required for appropriate multilineage stem cell differentiation, but argue against mitochondrial DNA mutations per se being a primary driver of somatic stem cell aging.  相似文献   

2.
Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalytic core of human Upf1p determined in three states (phosphate-, AMPPNP- and ADP-bound forms) reveals an overall structure containing two RecA-like domains with two additional domains protruding from the N-terminal RecA-like domain. Structural comparison combined with mutational analysis identifies a likely single-stranded RNA (ssRNA)-binding channel, and a cycle of conformational change coupled to ATP binding and hydrolysis. These conformational changes alter the likely ssRNA-binding channel in a manner that can explain how ATP binding destabilizes ssRNA binding to Upf1p.  相似文献   

3.
Motor proteins are involved in crucial cell activities, such as cargo transport or nucleic acid remodeling, by converting the free energy of ATP hydrolysis into motion or mechanical work. Flavivirus helicase is a motor protein involved in dsRNA separation during viral replication, thus essential for virus infection. Since a clear vision of the protein activity, in particular of the relationship between ATP cycling and dynamics, is missing, we carried over a molecular dynamics study on Dengue virus helicase in its ATP bound and unbound states. Our simulations show different opening levels of the ssRNA access site to the helicase core. Specifically, we show that ATP induces a closed state into the ssRNA access site, likely involved in the helicase unwinding activity.  相似文献   

4.
Over the past three years (2020–2022) more structures of GPCRs have been determined than in the previous twenty years (2000–2019), primarily of GPCR complexes that are large enough for structure determination by single-particle cryo-EM. This review will present some structural highlights that have advanced our molecular understanding of promiscuous G protein coupling, how a G protein receptor kinase and β-arrestins couple to GPCRs, and GPCR dimerisation. We will also discuss advances in the use of gene fusions, nanobodies, and Fab fragments to facilitate the structure determination of GPCRs in the inactive state that, on their own, are too small for structure determination by single-particle cryo-EM.  相似文献   

5.
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund–Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities.  相似文献   

6.
7.
Aging was once thought to be the result of a general deterioration of tissues as opposed to their being under regulatory control. However, investigations in a number of model organisms have illustrated that aspects of aging are controlled by genetic mechanisms and are potentially manipulable, suggesting the possibility of treatment for age-related disorders. Reproductive decline is one aspect of aging. In model organisms and humans of both sexes, increasing age is associated with both a decline in the number of progeny and an increased incidence of defects. The cellular mechanisms of reproductive aging are not well understood, although a number of factors, both intrinsic and extrinsic to an organism's germline, may contribute to aging phenotypes. Recent work in a variety of organisms suggests that nuclear organization and nuclear envelope proteins may play a role in these processes.  相似文献   

8.
Human diseases of telomerase dysfunction: insights into tissue aging   总被引:1,自引:1,他引:1  
There are at least three human diseases that are associated with germ-line mutations of the genes encoding the two essential components of telomerase, TERT and TERC. Heterozygous mutations of these genes have been described for patients with dyskeratosis congenita, bone marrow failure and idiopathic pulmonary fibrosis. In this review, we will detail the clinical similarities and difference of these diseases and review the molecular phenotypes observed. The spectrum of mutations in TERT and TERC varies for these diseases and may in part explain the clinical differences observed. Environmental insults and genetic modifiers that accelerate telomere shortening and increase cell turnover may exaggerate the effects of telomerase haploinsufficiency, contributing to the variability of age of onset as well as tissue-specific organ pathology. A central still unanswered question is whether telomerase dysfunction and short telomeres are a much more prominent factor than previously suspected in other adult-onset, age-related diseases. Understanding the biological effects of these mutations may ultimately lead to novel treatments for these patients.  相似文献   

9.
10.
11.
12.
Starting from the information on ovarian cancer provided by the mainstream publications, we construct a review focusing on the following issues: (i) the genetic profile, (ii) the role of the epithelial-mesenchymal transition in the acquirement of malignant features, (iii) the controversial hypothesis regarding the origin, and (iv) the involvement of the immune system in the tumoral microenvironment. Advances in the decipherment at the genetic level in the pathogenic mechanisms progressively lead to the idea of a genetic signature for the ovarian cancer. Moreover, the complementary approaches oriented towards the decryption of the intrinsic structure of the expressed molecules and, implicitly, the development of proteomics open new perspectives for an early diagnosis and an appropriate treatment. The research on the epithelial-mesenchymal transition (mainly those exploring the signaling pathways responsible for the switch between the loss of the epithelial characteristics and the gain of a mesenchymal cell phenotype, with results in the amplification of differentiation, motility and tumoral invasion) allow a deeper understanding of the complex pathogenic mechanism which governs ovarian carcinogenesis. The classic conception of ovarian cancer pathogeny, based on the role of the ovarian surface epithelium, is currently reconsidered, and a novel hypothesis is formulated, which supports direct involvement of the Fallopian tubes for the serous type. Although recent research suggests the implication of immune/inflammatory cells by specific mechanisms in ovarian cancer pathogenesis, there is yet reliable evidence concerning their modality of direct action and/or modulation of tumoral growth. Thus, ovarian carcinogenesis remains a research challenge, due to still numerous unknown factors involved in the malignant transformation sequences, originating from the genetic-molecular alterations and reflected by cellular and tissue expression patterns.  相似文献   

13.
Humans are often exposed to a variety of pollutants that contribute to an individual's risk for diseases including cancer. Animal, cell cultures and epidemiological lines of evidence demonstrate that exposure to various environmental pollutants including pesticides are associated with increasing frequency of cancers. Organophosphates, organochlorines, carbamates, pyrethroids, the major groups of pesticides, have been reported to be carcinogenic in various models. However, the results of these studies are still controversial, nevertheless, their mechanism of action is clear. Therefore, new strategies in toxicological research are needed for efficient screening for adverse effects of pesticides on complex living systems. Biomarkers can be employed to identify causal associations and to make better quantitative and qualitative estimates of those associations at relevant levels of exposure. This will enable us to deepen our understanding of mechanism behind their carcinogenic potential. Deciphering the associations between pesticide exposure and cancer, following toxicoproteomics application, will be useful in the development of potential predictive biomarkers of pesticide induced carcinogenicity. Therefore, the thrust of this article was to review the risk of cancer due to pesticide exposure and significant toxicoproteomic-based studies conducted so far, to identify the novel molecules as possible biomarkers for cancer following pesticide exposure.  相似文献   

14.
Mechanisms of amyloidogenesis are not well understood, including potential structural contributions of mutations in the process. Our previous research indicated that the dimer interface of amyloidogenic immunoglobulin light chain protein AL-09 is twisted 90 degrees relative to the protein from its germline sequence, kappaI O18/O8. Here we report a systematic restoration of AL-09 to its germline sequence by mutating the non-conservative somatic mutations located in the light chain dimer interface. Among these mutants, we find a correlation between increased thermodynamic stability and an increase in the lag time for fibril formation. The restorative mutant AL-09 H87Y completes the trifecta and restores the dimer interface observed in kappaI O18/O8, emphasizing the potential importance of the structural integrity of these proteins to protect against amyloidogenicity. We also find that adding amyloidogenic mutations into the germline protein illustrates mutational cooperativity in promoting amyloidogenesis.  相似文献   

15.
16.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   

17.
The neo-Darwinian paradigm benefits from the assumption that phenotypic variation is gradual and that phenotype and genotype have a relatively simple relationship. These assumptions are historically inherited from the times of the neo-Darwinian synthesis and, consequently, do not include present understanding about development. In this study, understanding about the dynamics of pattern formation is used to explore to that extent phenotypic variation can be expected to be gradual and simply related to molecular variation. Variation in simple phenotypes seems to fit neo-Darwinian assumptions but variation in complex phenotypes does not. Instead, variation in complex phenotypes would have a tendency to relatively less gradual evolution, even at microevolutionary time scales, that would make phylogenetic reconstructions more difficult. In addition, they will have a tendency to exhibit specific trends in innovation rates over group radiations with early accelerations and late decelerations. This work also explores further consequences of these results in our understanding of phenotypic evolution.  相似文献   

18.
19.
One of the most fascinating aspects of the Entamoeba histolytica trophozoite ultrastructure is the lack of a typical secretory pathway, particularly of rough endoplasmic reticulum and Golgi system, in a cell with such a high secretory activity. Here, we describe the isolation of amoeba cell structures containing ER-typical activities. Following isopycnic centrifugation of plasma membrane-free extracts, microsomes enriched in enzymatic activities such as dolichol-P-mannose synthase (DPMS; EC 2.4.1.83), UDP-GlcNAc:dolichol-P GlcNAc-1-P transferase (NAGPT; EC 2.7.8.15), and UDP-D-GlcNAc:dolichol-PP GlcNAc (NAGT; EC 2.4.1.141) were resolved from phagolysosomal fractions. Sec61alpha-subunit, an ER-marker involved in the translocation of nascent proteins to the ER, was found to co-fractionate with DPMS activity indicating that they are contained in microsomes with a similar density. Further, we optimized conditions for trophozoite homogenization and differential centrifugation that resulted in the separation of a 57,000 g-sedimenting microsomal fraction containing EhSec61alpha-subunit, EhDPMS, and EhPDI (protein disulfide isomerase, a soluble marker of the lumen of the ER). A relevant observation was the lack of ER markers associated to the nuclear fraction. Large macromolecular structures such as Ehproteasome were sedimented at a higher speed. Our knowledge of the molecular machinery involved in the biosynthesis of dolichol-linked oligosaccharide was enriched with the identification of putative genes related to the stepwise assembly of the dolichol-PP-GlcNAc(2)Man(5) core. No evidence of genes supporting further assembly steps was obtained at this time.  相似文献   

20.
While solution structures of adenine tract (A-tract) oligomers have indicated a unique bend direction equivalent to negative global roll (commonly termed "minor-groove bending"), crystallographic data have not unambiguously characterized the bend direction; nevertheless, many features are shared by all A-tract crystal and solution structures (e.g. propeller twisting, narrow minor grooves, and localized water spines). To examine the origin of bending and to relate findings to the crystallographic and solution data, we analyze molecular dynamics trajectories of two solvated A-tract dodecamers: 1D89, d(CGCGA(6)CG), and 1D98, d(CGCA(6)GCG), using a new general global bending framework for analyzing bent DNA and DNA/protein complexes. It is significant that the crystallographically-based initial structures are converted from dissimilar to similar bend directions equivalent to negative global roll, with the average helical-axis bend ranging from 10.5 degrees to 14.1 degrees. The largest bend occurs as positive roll of 12 degrees on the 5' side of the A-tracts (supporting a junction model) and is reinforced by gradual curvature at each A-tract base-pair (bp) step (supporting a wedge model). The precise magnitude of the bend is subtly sequence dependent (consistent with a curved general sequence model). The conversion to negative global roll only requires small local changes at each bp, accumulated over flexible moieties both outside and inside the A-tract. In contrast, the control sequence 1BNA, d(CGCGA(2)TTCGCG), bends marginally (only 6.9 degrees ) with no preferred direction. The molecular features that stabilize the bend direction in the A-tract dodecamers include propeller twisting of AT base-pairs, puckering differences between A and T deoxyriboses, a narrow minor groove, and a stable water spine (that extends slightly beyond the A-tract, with lifetimes approaching 0.2 ns). The sugar conformations, in particular, are proposed as important factors that support bent DNA. It is significant that all these curvature-stabilizing features are also observed in the crystallographic structures, but yield overall different bending paths, largely due to the effects of sequences outside the A-tract. These results merge structural details reported for A-tract structures by experiment and theory and lead to structural and dynamic insights into sequence-dependent DNA flexibility, as highlighted by the effect of an A-tract variant of a TATA-box element on bending and flexibility required for TBP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号