首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 781 毫秒
1.
目的研究肺损伤大鼠肺泡液体清除率(alveolar flui dclearance,AFC)及肺脏超微结构的变化规律,并探讨二者的内在联系。方法雄性Wistar大鼠120只,体重300~380g,随机分成12组,低氧大鼠暴露于10%的氧浓度,分别于24、48和72h测定基础AFC、特布他林作用后AFC、总肺水量(totallung water,TLW),并取病理切片观察肺脏超微结构的变化。结果大鼠暴露于10%的氧浓度24h后AFC(18.7±3.19%)与正常大鼠AFC(18.9±2.26%)比较没有明显变化,内皮细胞出现损伤改变,而上皮细胞并没有明显的结构变化;48h时AFC(13.6±2.60%)明显降低,但肺泡上皮细胞的结构和上皮细胞紧密连接并无明显损伤;72h AFC(9.93±1.95%)进一步降低,且经特布他林作用后AFC(12.7±2.64%)仍低于对照组基础AFC,肺泡上皮细胞的结构破坏。结论当轻、中度损伤时,虽AFC降低,但肺泡上皮屏障的结构可以没有明显改变,对药物有较好的反应性。  相似文献   

2.
目的探讨β1肾上腺素能受体激动剂BRL-37344对离体人肺脏肺泡液体清除率(AFC)的作用及其机制。方法首先将(10^-4-10^-8)mol/L的BRL-37344分别灌注到离体人肺脏肺泡腔内,测定AFC的变化。然后将10^-5moL/LBRL-37344分别与α受体阻滞剂酚妥拉明、13。受体阻滞剂阿替洛尔、β2受体阻滞剂ICI-118551、β3受体阻滞剂SR59230A、钠通道阻断剂氨氯吡咪、Na^+-K^+-ATP酶阻断剂哇巴因混合后灌注到离体人肺脏肺泡腔内,测定AFC的变化。结果10^-8mol/L的BRL-37344对离体人肺脏肺泡液体清除率没有影响,(10^-7-10^-4)mol/L的BRL-37344能够显著提高离体人肺脏肺泡液体清除率。BRL-37344增加离体人肺脏AFC的作用能够被SR59230A、氨氯吡咪和哇巴因抑制。结论BRL-37344主要通过调节Na^+/K^+-ATP酶的活性增加离体人肺脏肺泡液体清除能力,促进肺水肿液的吸收。  相似文献   

3.
目的:观察一氧化氮对大鼠背根神经节神经元的作用及有关离子机制,并探讨一氧化氮在痛觉信息传递过程中的作用。方法:在分离的大鼠背根神经节标本上,应用细胞内记录技术,给予灌流一氧化氮供体硝普钠,观察硝普钠诱导的神经元膜反应。结果:大部分神经元对硝普钠敏感(79/102,77.45%),滴加硝普钠(10~100mmol/L)后可引起浓度依赖性的超极化反应,剩余神经元没有反应。硝普钠(100mmol/L)可使神经元膜电导由(21.06±1.94)nS增加到(23.08±0.92)nS。L-NAME(非选择性一氧化氮合酶抑制剂,1mmol/L)、CdCl2(非选择性钙通道阻断剂,0.1mmol/L)、无Na^+平衡盐液对硝普钠引起超极化反应无明显影响。四乙基碘化铵(非选择性钾通道阻断剂,10mmol/L)明显抑制硝普钠引起的超极化反应。结论:硝普钠在大鼠背根神经节神经元上可引起浓度依赖的超极化反应,且此超极化反应是钾电导介导的。  相似文献   

4.
川芎嗪增加大鼠远端结肠阴离子分泌的基侧膜机制   总被引:3,自引:1,他引:2  
Xing Y  He Q  Zhu JX  Chan HC 《生理学报》2003,55(6):653-657
本研究用短路电流技术来观察在川芎嗪作用下,电解质在大鼠远端结肠上皮细胞的转运及其细胞机制。在新鲜分离的结肠上皮的基侧膜加入川芎嗪,能产生较大的短路电流。用粘膜下神经元阻断剂——河豚毒素预作用于结肠上皮,不影响随后的川芎嗪所产生的短路电流,前列腺素合成抑制剂indomethacin预作用可使随后的川芎嗪产生的短路电流减少55.2%。在结肠上皮的顶膜加入Cl^-通道阻断剂DPC和glibenclamide,能完全阻断川芎嗪产生的短路电流。Bumetanide,基侧膜钠、钾、氯共转运体阻断剂能抑制川芎嗪引起的短路电流的85.2%,而结肠上皮细胞基侧膜的非选择性钾通道阻断剂Ba^2 能阻断90%以上的短路电流,说明基侧膜的钠、钾、氯共转运体和钾通道在川芎嗪引起的短路电流中起着重要的作用。上述结果表明,川芎嗪刺激大鼠远端结肠上皮细胞分泌Cl^-是通过上皮细胞顶膜Cl^-通道和基侧膜的钠、钾、氯共转体和K^ 通道介导的。  相似文献   

5.
目的:研究雌孕激素对ALI大鼠II型肺泡上皮细胞钠通道(epithelial Na+channel,ENaC)α亚基,血清脑钠肽(brain natriuretic peptide,BNP)和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)表达的影响,探讨肺泡内液体清除的机制。方法:雌性未成年SD大鼠30只,随机分为3组:对照组(静脉注入生理盐水8 mL/kg)、ALI模型组(静脉注入油酸0.1 mL/kg)、雌孕激素联合组(在油酸注入前12 h、36 h皮下注射1∶1 000雌孕激素混合液0.1 mL)。建模后6 h处死大鼠,观察肺组织病理改变,测定肺湿重/干重比值、肺系数,肺组织匀浆中α-ENaC mRNA及蛋白的表达及血清BNP、TNF-α的表达。结果:与对照组比较,模型组出现明显肺水肿、出血及炎性细胞浸润,肺湿重/干重比值、肺系数及血清中BNP、TNF-α表达增加,而α-ENaC mRNA及蛋白明显降低(P<0.01);雌孕激素联合组与ALI模型组比较,肺水肿、出血及炎性细胞浸润要轻,肺湿重/干重比值、肺系数、BNP下降,α-ENaC mRNA及蛋白增加(P<0.05)。结论:雌孕激素联合治疗可上调α-ENaC mRNA及蛋白的表达,减少BNP表达,促进肺泡内液体的清除,为ALI/急性呼吸窘迫综合症(ARDS)的治疗和监控提供新的方法。  相似文献   

6.
钠-钾ATP酶(Na -K -ATPase)对于维持胞质渗透压和细胞容积的相对稳定以及细胞内pH的稳定具有重要的生理意义.肺泡上皮具有阻止液体进入肺泡腔内和主动清除肺泡腔内液体的作用,是抵抗肺泡性肺水肿形成的一道重要屏障.这一功能的完成有赖于Ⅱ型肺泡上皮细胞对钠离子的主动转运和分布于Ⅰ型、Ⅱ型肺泡上皮细胞的特殊水通道,而钠离子的主动转运依靠钠-钾ATP酶来完成.海水淹溺型肺水肿(PE-SWD)是以低氧血症及代谢性酸中毒为主要病理生理学特点的临床病症.PE-SWD发生时,Na -K -ATPase活性的改变直接影响到细胞膜外Na 、K 、等离子的浓度和分布,既是造成PE-SWD发生的多种因素所引起的直接恶果,又是促进PE-SWD不断发生的继发性原因.因此认识肺泡上皮细胞钠-钾ATP酶在PE-SWD发病中的作用对于PE-SWD的治疗具有重要意义.本文就钠-钾ATP酶的功能、结构、调节机制及钠-钾ATP酶在PE-SWD发病中的作用作一综述.  相似文献   

7.
目的探讨禁食不同时段大鼠下丘脑穹窿周区orexin—A的表达及是否与摄食有关。方法观察禁食前后大鼠体重变化,采用免疫组织化学染色法观察禁食不同时段下丘脑穹窿周区orexin-A的表达变化,灰度值测量观察各组orexin—A的染色强度。结果大鼠体重随禁食时间的延长而逐渐降低,各组大鼠禁食前后体重变化有统计学差异(P〈O.01);Orexin-A主要分布于下丘脑穹窿周区,禁食组orexin—A阳性神经元计数明显多于对照组(P〈O.05),但不同禁食组间orexin-A阳性神经元计数比较没有统计学差异(P〉O.05);禁食48h组染色强度最深,与对照组和禁食24h、72h组有明显统计学差异(P〈0.05)。结论禁食可以促进orexin-A的表达,禁食48h应该是一种理想的促进orexin-A活化的刺激方式,orexin-A系统可能参与摄食及能量代谢的调节。  相似文献   

8.
实验性高原肺水肿发病机制的初步研究   总被引:4,自引:0,他引:4  
本研究用Wistar大鼠在模拟海拔6000m高度停留48h,对实验性高原肺水肿的发病机制进行了初步观察,结果表明:(1)大鼠肺血管外含水量明显增多;(2)肺泡隔增宽,肺泡隔内血管口径大小不一,有的扩张,有的狭窄甚至闭锁,硝酸镧示踪电镜术发现肺泡上皮、血管内皮和肺泡隔内有数量不等的镧颗粒;(3)硝苯啶或地塞米松均可使肺血管外含水量明显降低,二者联合作用效果更佳;(4)血浆内心钠素(ANP)含量明显增多,伴有体重和血液含水量明显减少。从而表明,低氧性肺动脉压升高和肺泡壁微血管壁通透性增强在高原肺水肿的发生中有重要作用。血浆ANP增加和伴随的血液浓缩是对抗血浆进一步外渗的因素之一。  相似文献   

9.
目的:观察大鼠侧脑室注射胆碱能激动剂氨甲酰胆碱(CBC)后蓝斑胆碱能神经元活性变化及其与促钠排泄反应的关系。方法:选用SD雄性大鼠通过整体实验和免疫组化方法,观察侧脑室给予氨甲酰胆碱(0.5μg)和俄阿托品(30μg)后肾排钠量的变化及蓝斑胆碱乙酰转移酶(CHAT)免疫反应活性的变化。结果:侧脑室给予氨甲酰胆碱后40min,肾排钠量显著增加,蓝斑的CHAT-IR明显增强(P〈0.05);阿托品预处理后可明显抑制上述反应。结论:蓝斑的胆碱能神经元参与侧脑室注射氨甲酰胆碱引起的促钠排泄反应。  相似文献   

10.
王勇  林茂樟  韩桂春 《生理学报》1997,49(6):679-684
在窦主动脉去神经麻醉兔观察阻断脊髓α受体对血量扩张引起肾交感神经活动(RSNA)抑制和促钠排泄反应的影响。兔脊髓蛛网膜下腔注射a肾上腺素能受体阻断剂酚妥拉明与人工脑脊液后,血量扩张引起RSNA抑制分别为(-25.4±5.4)%与(-42.5±5.2)%(P<0.05);兔脊髓蛛网膜下腔注射α1受体阻断剂哌唑嗪与人工脑脊液后血量扩张引起RSNA抑制分别为(-29.3±6.1)%与(-42.5±5.2)%(P<005)。结果表明,阻断脊髓α受体或α1受体均可减弱血量扩张引起RSNA抑制。脊髓注射哌唑嗪后血量扩张引起促钠排泄与利尿反应也显著减弱(P<005)。  相似文献   

11.
Inadequate nutrition complicates the clinical course of critically ill patients, and many of these patients develop pulmonary edema. However, little is known about the effect of malnutrition on the mechanisms that resolve alveolar edema. Therefore, we studied the mechanisms responsible for the decrease in alveolar fluid clearance in rats exposed to malnutrition. Rats were allowed access to water, but not to food, for 120 h. Then, the left and right lungs were isolated for the measurement of lung water volume and alveolar fluid clearance, respectively. The rate of alveolar fluid clearance was measured by the progressive increase in the concentration of Evans blue dye that was instilled into the distal air spaces with an isosmolar 5% albumin solution over 1 h. Malnutrition decreased alveolar fluid clearance by 38% compared with controls. Amiloride (10(-3) M) abolished alveolar fluid clearance in malnourished rats. Either refeeding for 120 h following nutritional deprivation for 120 h or an oral supply of sodium glutamate during nutritional deprivation for 120 h restored alveolar fluid clearance to 91 and 86% of normal, respectively. Dibutyryl-cGMP, a cyclic nucleotide-gated cation channel agonist, increased alveolar fluid clearance in malnourished rats supplied with sodium glutamate. Terbutaline, a beta(2)-adrenergic agonist, increased alveolar fluid clearance in rats under all conditions (control, malnutrition, refeeding, and glutamate-treated). These results indicate that malnutrition impairs primarily amiloride-insensitive and dibutyryl-cGMP-sensitive alveolar fluid clearance, but this effect is partially reversible by refeeding, treatment with sodium glutamate, or beta-adrenergic agonist therapy.  相似文献   

12.
Widespread vascular endothelial injury is the major mechanism for multiorgan dysfunction in sepsis. Following this process, the permeability of the alveolar capillaries is augmented with subsequent increase in water content and acute respiratory distress syndrome (ARDS). Nevertheless, the role of alveolar epithelium is less known. Therefore, we examined alveolar fluid clearance (AFC) using isolated perfused rat lung model in septic rats without ARDS. Sepsis was induced by ligating and puncturing the cecum with a 21-gauge needle. AFC was examined 24 and 48 h later. The expression of Na-K-ATPase proteins was examined in type II alveolar epithelial cells (ATII) and basolateral membrane (BLM). The rate of AFC in control rats was 0.51 ± 0.02 ml/h (means ± SE) and decreased to 0.3 ± 0.02 and 0.33 ± 0.03 ml/h in 24 and 48 h after sepsis induction, respectively (P < 0.0001). Amiloride, significantly decreased AFC in sepsis; conversely, isoproterenol reversed the inhibitory effect of sepsis. The alveolar-capillary barrier in septic rats was intact; therefore the finding of increased extravascular lung water in early sepsis could be attributed to accumulation of protein-poor fluid. The expression of epithelial sodium channel and Na-K-ATPase proteins in whole ATII cells was not different in both cecal ligation and puncture and control groups; however, the abundance of Na-K-ATPase proteins was significantly decreased in BLMs of ATII cells in sepsis. Early decrease in AFC in remote sepsis is probably related to endocytosis of the Na-K-ATPase proteins from the cell plasma membrane into intracellular pools, with resultant inhibition of active sodium transport in ATII cells.  相似文献   

13.
There is little information regarding the effect of hypoxia on alveolar fluid clearance capacity. We measured alveolar fluid clearance, lung water volume, plasma catecholamine concentrations, and serum osmolality in rats exposed to 10% oxygen for up to 120 h and explored the mechanisms responsible for the increase in alveolar fluid clearance. The principal results were 1) alveolar fluid clearance did not change for 48 h and then increased between 72 and 120 h of exposure to hypoxia; 2) although nutritional impairment during hypoxia decreased basal alveolar fluid clearance, endogenous norepinephrine increased net alveolar fluid clearance; 3) the changes of lung water volume and serum osmolality were not associated with those of alveolar fluid clearance; 4) an administration of beta-adrenergic agonists further increased alveolar fluid clearance; and 5) alveolar fluid clearance returned to normal within 24 h of reoxygenation after hypoxia. In conclusion, alveolar epithelial fluid transport capacity increases in rats exposed to hypoxia. It is likely that a combination of endogenous norepinephrine and nutritional impairment regulates alveolar fluid clearance under hypoxic conditions.  相似文献   

14.
Cell membrane phospholipids, like phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)], can regulate epithelial Na channel (ENaC) activity. Gender differences in lung ENaC expression have also been demonstrated. However, the effects in vivo on alveolar fluid clearance are uncertain. Thus PI(4,5)P(2) effects on alveolar fluid clearance were studied in male and female rats. An isosmolar 5% albumin solution was intrapulmonary instilled; alveolar fluid clearance was studied for 1 h. Female rats had a 37 ± 19% higher baseline alveolar fluid clearance than male rats. Bilateral ovariectomy attenuated this gender difference. Compared with controls, PI(4,5)P(2) instillation (300 μM) increased alveolar fluid clearance by ~93% in both genders. Amiloride or the specific αENaC small-interfering RNA inhibited baseline and PI(4,5)P(2)-stimulated alveolar fluid clearance in both genders, indicating a dependence on amiloride-sensitive pathways. The fraction of amiloride inhibition was greater in PI(4,5)P(2)-instilled rats (male: 64 ± 10%; female: 70 ± 11%) than in controls (male: 30 ± 6%; female: 44 ± 8%). PI(4,5)P(2) instillation lacked additional alveolar fluid clearance stimulation above that of terbutaline, nor did propranolol inhibit alveolar fluid clearance after PI(4,5)P(2) instillation, indicating that PI(4,5)P(2) stimulation was not secondary to endogenous β-adrenoceptor activation. PI(4,5)P(2) amine instillation resulted in an intermediate alveolar fluid clearance stimulation, suggesting that, to reach maximal alveolar fluid clearance stimulation, PI(4,5)P(2) must reside in cell membranes. In summary, PI(4,5)P(2) instillation upregulated in vivo alveolar fluid clearance similar to short-term β-adrenoceptor upregulation of alveolar fluid clearance. PI(4,5)P(2) stimulation was mediated partly by increased amiloride-sensitive Na transport. There exist important gender-related effects suggesting a female advantage that may have clinical implications for resolution of acute lung injury.  相似文献   

15.
To study air space fluid clearance (AFC) under conditions that resemble the clinical setting of pulmonary edema in patients, we developed a new perfused human lung preparation. We measured AFC in 20 human lungs rejected for transplantation and determined the contribution of AFC to lung fluid balance. AFC was then compared with air space and perfusate levels of a biological marker of epithelial injury. The majority of human lungs rejected for transplant had intact basal (75%) and beta(2)-adrenergic agonist-stimulated (70%) AFC. For lungs with both basal and stimulated AFC, the basal AFC rate was 19 +/- 10%/h, and the beta(2)-adrenergic-stimulated AFC rate was 43 +/- 13%/h. Higher rates of AFC were associated with less lung weight gain (Pearson coefficient -0.90, P < 0.0001). Air space and perfusate levels of the type I pneumocyte marker receptor for advanced glycation end products (RAGE) were threefold and sixfold higher, respectively, in lungs without basal AFC compared with lungs with AFC (P < 0.05). These data show that preserved AFC is a critical determinant of favorable lung fluid balance in the perfused human lung, raising the possibility that beta(2)-agonist therapy to increase edema fluid clearance may be of value for patients with acute lung injury and pulmonary edema. Also, although additional studies are needed, a biological marker of alveolar epithelial injury may be useful clinically in predicting preserved AFC.  相似文献   

16.
Our recent report (Garat C, Carter EP, and Matthay MA. J Appl Physiol 84: 1763-1767, 1998) described a new method to measure alveolar fluid clearance (AFC) in an in situ mouse preparation. However, in vivo preparations may be more suitable for studying alveolar fluid transport under some pathological conditions. Therefore, we developed a ventilated mouse model and compared AFC in the ventilated and the in situ mouse models. After 15 min, AFC was similar in both groups, but, after 30 min, AFC was 38% slower in the in situ mice (P < 0.05). Bilateral adrenalectomy and propranolol did not inhibit AFC after 15 min. Amiloride inhibited 90% of AFC in both groups. To evaluate the mechanism for the slower AFC in the in situ mouse preparation, we measured the extravascular lung water and calculated interstitial fluid volume. Extravascular lung water and interstitial fluid volume were greater in the in situ mice than in the ventilated mice at 30 min (P < 0.05). These results indicate that mouse AFC is fast, highly amiloride sensitive, and independent of endogenous catecholamines during the first 15 min. Accumulation of interstitial fluid probably plays an important role in slowing AFC in the in situ mouse lung model at later time intervals. These mouse models will be useful to quantify alveolar epithelial fluid transport under pathological conditions.  相似文献   

17.
We previously demonstrated that intratracheally administered S-ketamine inhibits alveolar fluid clearance (AFC), whereas an intravenous (IV) bolus injection had no effect. The aim of the present study was to characterize whether continuous IV infusion of S-ketamine, yielding clinically relevant plasma concentrations, inhibits AFC and whether its effect is enhanced in acute lung injury (ALI) which might favor the appearance of IV S-ketamine at the alveolar surface. AFC was measured in fluid-instilled rat lungs. S-ketamine was administered IV over 6 h (loading dose: 20 mg/kg, followed by 20 mg/kg/h), or intratracheally by addition to the instillate (75 µg/ml). ALI was induced by IV lipopolysaccharide (LPS; 7 mg/kg). Interleukin (IL)-6 and cytokine-induced neutrophil chemoattractant (CINC)-3 were measured by ELISA in plasma and bronchoalveolar lavage fluid. Isolated rat alveolar type-II cells were exposed to S-ketamine (75 µg/ml) and/or LPS (1 mg/ml) for 6 h, and transepithelial ion transport was measured as short circuit current (ISC). AFC was 27±5% (mean±SD) over 60 min in control rats and was unaffected by IV S-ketamine. Tracheal S-ketamine reduced AFC to 18±9%. In LPS-treated rats, AFC decreased to 16±6%. This effect was not enhanced by IV S-ketamine. LPS increased IL-6 and CINC-3 in plasma and bronchoalveolar lavage fluid. In alveolar type-II cells, S-ketamine reduced ISC by 37% via a decrease in amiloride-inhibitable sodium transport. Continuous administration of IV S-ketamine does not affect rat AFC even in endotoxin-induced ALI. Tracheal application with direct exposure of alveolar epithelial cells to S-ketamine decreases AFC by inhibition of amiloride-inhibitable sodium transport.  相似文献   

18.
Because tumor necrosis factor (TNF)-alpha can upregulate alveolar fluid clearance (AFC) in pneumonia or septic peritonitis, the mechanisms responsible for the TNF-alpha-mediated increase in epithelial fluid transport were studied. In rats, 5 microg of TNF-alpha in the alveolar instillate increased AFC by 67%. This increase was inhibited by amiloride but not by propranolol. We also tested a triple-mutant TNF-alpha that is deficient in the lectinlike tip portion of the molecule responsible for its membrane conductance effect; the mutant also has decreased binding affinity to both TNF-alpha receptors. The triple-mutant TNF-alpha did not increase AFC. Perfusion of human A549 cells, patched in the whole cell mode, with TNF-alpha (120 ng/ml) resulted in a sustained increase in Na(+) currents from 82 +/- 9 to 549 +/- 146 pA (P < 0.005; n = 6). The TNF-alpha-elicited Na(+) current was inhibited by amiloride, and there was no change when A549 cells were perfused with the triple-mutant TNF-alpha or after preincubation with blocking antibodies to the two TNF-alpha receptors before perfusion with TNF-alpha. In conclusion, although TNF- alpha can initiate acute inflammation and edema formation in the lung, TNF-alpha can also increase AFC by an amiloride-sensitive, cAMP-independent mechanism that enhances the resolution of alveolar edema in pathological conditions by either binding to its receptors or activating Na(+) channels by means of its lectinlike domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号