首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Skp2 suppresses p53-dependent apoptosis by inhibiting p300   总被引:1,自引:0,他引:1  
The F box protein Skp2 is oncogenic, and its frequent amplification and overexpression correlate with the grade of malignancy of certain tumors. Conversely, depletion of Skp2 decreases cell growth and increases apoptosis. Here, we show that Skp2 counteracts the transactivation function of p53 and suppresses apoptosis mediated by DNA damage or p53 stabilization. We demonstrate that Skp2 forms a complex with p300 through the CH1 and the CH3 domains of p300 to which p53 is thought to bind and antagonizes the interaction between p300 and p53 in cells and in vitro. As Skp2 antagonizes the interaction between p300 and p53, Skp2 suppresses p300-mediated acetylation of p53 and the transactivation ability of p53. Conversely, ectopic expression of p300 rescues the transactivation function of p53 in cells overexpressing Skp2. Taken together, our results indicate that Skp2 controls p300-p53 signaling pathways in cancer cells, making Skp2 a potential molecular target for cancer therapy.  相似文献   

3.
The F‐box protein Skp2 and its isoform Skp2B are both overexpressed in breast cancers. Skp2 alters the activity of p53 by inhibiting its interaction with p300 and by promoting p300 degradation. Here, we report that Skp2B also attenuates the activity of p53; however, this effect is independent of p300, suggesting that another mechanism might be involved. Prohibitin, a protein reported to activate p53, was isolated in a two‐hybrid screen with the carboxy‐terminal domain unique to Skp2B. We observed that prohibitin is a new substrate of Skp2B and that the degradation of prohibitin is responsible for the attenuated activity of p53 in cells overexpressing Skp2B. Furthermore, we show that the activity of p53 is reduced in the mammary glands of Skp2B transgenic mice. This study indicates that both Skp2 and Skp2B attenuate p53 activity through different pathways, suggesting that amplification of the Skp2 locus represents a powerful mechanism to attenuate p53 function in cancer.  相似文献   

4.
Inoue T  Geyer RK  Yu ZK  Maki CG 《FEBS letters》2001,490(3):196-201
p53 is stabilized in response to DNA damaging stress. This stabilization is thought to result from phosphorylation in the N-terminus of p53, which inhibits p53:MDM2 binding, and prevents MDM2 from promoting p53 ubiquitination. In this report, the DNA alkylating agents mitomycin C (MMC) and methylmethane sulfonate (MMS), as well as UV radiation, stabilized p53 in a manner independent of phosphorylation in p53 N-terminus. This stabilization coincided with decreased levels of MDM2 mRNA and protein, and a corresponding decrease in p53 ubiquitination. Importantly, MDM2 overexpression inhibited the stabilization of p53 and decrease in ubiquitination following MMC, MMS, and UV treatment. This indicates that downregulation of MDM2 contributes to the stabilization of p53 in response to these agents.  相似文献   

5.
The bone morphogenetic protein (BMP) signaling pathway is essential during gastrulation for the generation of ventral mesoderm, which makes it a challenge to define functions for this pathway at later stages of development. We have established an approach to disrupt BMP signaling specifically in lateral mesoderm during somitogenesis, by targeting a dominant-negative BMP receptor to Lmo2+ cells in developing zebrafish embryos. This results in expansion of hematopoietic and endothelial cells, while restricting the expression domain of the pronephric marker pax2.1. Expression of a constitutively active receptor and transplantation experiments were used to confirm that BMP signaling in lateral mesoderm restricts subsequent hemato-vascular development. The results show that the BMP signaling pathway continues to function after cells are committed to a lateral mesoderm fate, and influences subsequent lineage decisions by restricting hemato-vascular fate in favor of pronephric development.  相似文献   

6.
Many features of the cancer cell phenotype emerge as a result of cooperation between multiple oncogenic mutations. Here we show that activated Ras(V12) and loss of p53 function can cooperate to promote cell motility, a feature closely associated with cancer progression to malignancy. Our analysis indicates that Ras(V12) and loss of p53 synergistically induce RhoA activity, revealing a previously unknown role for p53 in tumor suppression. p53 prevents activation of RhoA and thus induction of cell motility by Ras(V12) through a simple signaling circuit, which integrates multiple inputs that converge on RhoA. Our data suggest that p53 suppresses cancer progression to malignancy by modulating the quality of Ras signaling.  相似文献   

7.
According to the three-signal model of mesoderm patterning in Xenopus, all mesoderm, with the exception of the Spemann organizer, is originally specified as ventral type, such as lateral plate and primary blood islands. It is proposed that the blood islands become restricted to the ventralmost mesoderm because they are not exposed to the BMP-inhibiting activity of the Spemann organizer. We present evidence here that, contrary to predictions of this model, the blood islands remain ventrally restricted even in the absence of Spemann organizer signaling. We further observed that inhibition of FGF signaling with a dominant negative receptor resulted in the expansion of the blood island-forming territory with a concomitant loss of somite. The requirement for FGF signaling in specifying somite versus blood island territories was observed as early as midgastrulation. The nonoverlapping expression domains of Xnr-2 and Xbra in the gastrula marginal zone appear to mark presumptive blood island and somite, respectively. Inhibition of FGF signaling with dominant negative receptor leads to an expansion of Xnr-2 expression and to a corresponding reduction in Xbra expression. On the other hand, we found no evidence that manipulation of BMP signaling, either positively or negatively, altered the expression domains of Xnr-2 and Xbra. These results suggest that FGF signaling, rather than BMP-inhibiting activity, is essential for restriction of the ventral blood islands to ventral mesoderm.  相似文献   

8.
9.
10.
The effect of lipopolysaccharide on doxorubicin-induced cell death was studied by using mouse RAW 264.7 macrophage cells. Pretreatment with lipopolysaccharide at 10 ng/mL prevented doxorubicin-induced cell death and the inhibition was roughly dependent on the concentration of lipopolysaccharide. Posttreatment with lipopolysaccharide for 1 hour also prevented doxorubicin-induced cell death. Lipopolysaccharide inhibited DNA fragmentation and caspase-3 activation in doxorubicin-treated RAW 264.7 cells, suggesting the prevention of doxorubicin-induced apoptosis. Lipopolysaccharide did not significantly inhibit doxorubicin-induced DNA damage detected by single-cell gel electrophoresis (comet) assay. Lipopolysaccharide definitely inhibited the stabilization and nuclear translocation of p53 in doxorubicin-treated RAW 264.7 cells. Lipopolysaccharide, as well as being an inhibitor of p53, abolished doxorubicin-induced apoptosis. Therefore, p53 was suggested to play a pivotal role in the prevention of doxorubicin-induced apoptosis in RAW 264.7 cells by lipopolysaccharide.  相似文献   

11.
The differentiation of precardiac mesoderm into beating heart tissue was examined during explant culture. Explanted tissue forms tubular heart-like vesicles and initiates rhythmic contractility within 18-24 h in vitro, a developmental time-course approximating that observed during in vivo development. Electron-microscopic observations reveal that beating heart cells are rich in cytoplasmic myofibrils in varying degrees of order, with some regions containing highly organized myofibrillar arrays. The analysis of actin-isotype biosynthesis, using metabolic labeling with [35S]-methionine and isoelectric-focusing resolution of the synthesized radioactive polypeptides, demonstrates that the initiation of cardiac alpha-actin synthesis and the pattern of transition in the synthesis of alpha-, beta-, and gamma-actin isotypes is equivalent to the initiation time and pattern observed in vivo. A possible collagen involvement in the differentiation process was investigated by assessing the effects of collagen-synthesis inhibitors on the development of the explant cultures. Two different agents, alpha, alpha'-dipyridyl and L-azetidine-2-carboxylic acid, exhibited a dose-dependent ability to inhibit the formation of beating heart tissue. When examined by electron microscopy, the nonbeating tissue exhibited a drastic depression of myofibrillogenesis, but otherwise appeared healthy. Further examination of the effect of L-azetidine-2-carboxylic acid demonstrated that the inhibition of myofibril formation and heartbeat was correlated with a 60% inhibition of native collagen synthesis; however, the time-course and pattern of actin-isotype biosynthesis was completely unaffected. The data suggest a possible involvement in heart differentiation that is necessary for either the synthesis of non-actin cardiac contractile proteins or the assembly of cardiac contractile proteins into myofibrils.  相似文献   

12.
13.
14.
15.
16.
17.
Coordinated Nodal-related signals and Bozozok (Boz) activity are critical for the initial specification of dorsal mesoderm and anterior neuroectoderm during zebrafish embryogenesis. Overexpression of Boz expands gsc expression into the ventro-lateral marginal blastomeres where Nodal signaling is active, but is insufficient to induce ectopic gsc expression in the animal region. We found that overexpression of Boz together with depletion of Lnx-2b (previously named Lnx-like, Lnx-l), but not each manipulation alone, causes robust gsc expression in all blastomeres. Furthermore, nodal-related signals are required for gsc expression in embryos with elevated Boz activity. Through targeted injection into single cells at the 128-cell stage we illustrate the role of maternally deposited Lnx-2b to restrict the expansion of gsc expression into the presumptive ectodermal region. This report provides a novel mechanism for limiting dorsal organizer specification to a defined region of the early zebrafish embryo.  相似文献   

18.
Prostate cancer (PCa) is one of the most common types of cancer in men. In several recent studies, chromosomal deletions in the q arm of chromosome 2, where ING5 resides within, have been identified in various cancer types including PCa. In this study, we investigate the role of ING5 as a tumor suppressor in PCa. We examined the expression level of ING5 in tissue samples and cell lines using quantitative real‐time polymerase chain reaction and western blot analysis. We tested the in vitro tumor suppressor potential of ING5 in PC3 and LNCaP cells stably overexpressing it using cell viability, colony formation, migration, invasion, and apoptosis assays. We then investigated the effects of ING5 on the Akt and p53 signaling using western blot analysis. We show that ING5 is significantly downregulated in PCa tumor tissue samples and cell lines compared with the corresponding controls. In vitro assays demonstrate that ING5 effectively suppresses proliferative, clonogenic, migratory, and invasive potential and induce apoptosis in PCa cells. ING5 may potentially exert its anti‐tumor potential by inhibiting AKT and inducing p53 signaling pathways. Our findings demonstrate that ING5 possesses tumor suppressor roles in vitro, pointing its importance during the prostatic carcinogenesis processes.  相似文献   

19.
Currently, there remains a great need to elucidate the molecular mechanism of acute myocardial infarction in order to facilitate the development of novel therapy. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) is a member of the ASPP family proteins and an evolutionarily preserved inhibitor of p53 that is involved in many cellular processes, including apoptosis of cancer cells. The purpose of this study was to investigate the possible role of iASPP in acute myocardial infarction. The protein level of iASPP was markedly reduced in the ischemic hearts in vivo and hydrogen peroxide-exposed cardiomyocytes in vitro. Overexpression of iASPP reduced the infarct size and cardiomyocyte apoptosis of mice subjected to 24 h of coronary artery ligation. Echocardiography showed that cardiac function was improved as indicated by the increase in ejection fraction and fractional shortening. In contrast, knockdown of iASPP exacerbated cardiac injury as manifested by impaired cardiac function, increased infarct size, and apoptosis rate. Mechanistically, overexpression of iASPP inhibited, while knockdown of iASPP increased the expressions of p53 and Bax, the key regulators of apoptosis. Taken together, our results suggested that iASPP is an important regulator of cardiomyocyte apoptosis, which represents a potential target in the therapy of myocardial infarction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号