首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the DNA damage response (DDR) is critical for genomic integrity and tumor suppression. The occurrence of DNA damage quickly evokes the DDR through ATM/ATR-dependent signal transduction, which promotes DNA repair and activates the checkpoint to halt cell cycle progression (Halazonetis et al., 2008; Motoyama and Naka, 2004; Zhou and Elledge, 2000). The "turn off" process of the DDR upon satisfaction of DNA repair, also known as "checkpoint recovery", involves deactivation of DDR elements, but the mechanism is poorly understood. Greatwall kinase (Gwl) has been identified as a key element in the G2/M transition (Archambault et al., 2007; Jackson, 2006; Zhao et al., 2008; Yu et al., 2004; Yu et al., 2006; Zhao et al., 2006) and helps maintain M phase through inhibition of PP2A/B55δ (Burgess et al., 2010; Castilho et al., 2009; Goldberg, 2010; Lorca et al., 2010; Vigneron et al., 2009), the principal phosphatase for Cdk-phosphorylated substrates. Here we show that Gwl also promotes recovery from DNA damage and is itself directly inhibited by the DNA damage response (DDR). In Xenopus egg extracts, immunodepletion of Gwl increased the DDR to damaged DNA, whereas addition of wild type, but not kinase dead Gwl, inhibited the DDR. The removal of damaged DNA from egg extracts leads to recovery from checkpoint arrest and entry into mitosis, a process impaired by Gwl depletion and enhanced by Gwl over-expression. Moreover, activation of Cdk1 after the removal of damaged DNA is regulated by Gwl. Collectively, these results defines Gwl as a new regulator of the DDR, which plays an important role in recovery from DNA  相似文献   

2.
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.  相似文献   

3.
4.
The Hedgehog (HH) signaling pathway is a central regulator of embryonic development, controlling the pattern and proliferation of a wide variety of organs. Previous studies have implicated the secreted protein, Scube2, in HH signal transduction in the zebrafish embryo (Hollway et al., 2006; Kawakami et al., 2005; Woods and Talbot, 2005) although the nature of the molecular function of Scube2 in this process has remained undefined. This analysis has been compounded by the fact that removal of Scube2 activity in the zebrafish embryo leads to only subtle defects in HH signal transduction in vivo (Barresi et al., 2000; Hollway et al., 2006; Ochi and Westerfield, 2007; van Eeden et al., 1996; Wolff et al., 2003). Here we present the discovery of two additional scube genes in zebrafish, scube1 and scube3, and demonstrate their roles in facilitating HH signal transduction. Knocking down the function of all three scube genes simultaneously phenocopies a complete loss of HH signal transduction in the embryo, revealing that Scube signaling is essential for HH signal transduction in vivo. We further define the molecular role of scube2 in HH signaling.  相似文献   

5.
Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors.  相似文献   

6.
Drosophila olfactory sensory neurons (OSNs) each express two odorant receptors (ORs): a divergent member of the OR family and the highly conserved, broadly expressed receptor OR83b. OR83b is essential for olfaction in vivo and enhances OR function in vitro, but the molecular mechanism by which it acts is unknown. Here we demonstrate that OR83b heterodimerizes with conventional ORs early in the endomembrane system in OSNs, couples these complexes to the conserved ciliary trafficking pathway, and is essential to maintain the OR/OR83b complex within the sensory cilia, where odor signal transduction occurs. The OR/OR83b complex is necessary and sufficient to promote functional reconstitution of odor-evoked signaling in sensory neurons that normally respond only to carbon dioxide. Unexpectedly, unlike all known vertebrate and nematode chemosensory receptors, we find that Drosophila ORs and OR83b adopt a novel membrane topology with their N-termini and the most conserved loops in the cytoplasm. These loops mediate direct association of ORs with OR83b. Our results reveal that OR83b is a universal and integral part of the functional OR in Drosophila. This atypical heteromeric and topological design appears to be an insect-specific solution for odor recognition, making the OR/OR83b complex an attractive target for the development of highly selective insect repellents to disrupt olfactory-mediated host-seeking behaviors of insect disease vectors.  相似文献   

7.
浙江天台盆地晚白垩世恐龙蛋新类型(英文)   总被引:1,自引:0,他引:1  
浙江天台盆地上白垩统赖家组和赤城山组是我国最重要的恐龙蛋化石产出地层之一。近年来,我们对天台盆地陆相红层中的恐龙蛋化石层位进行了详细厘定,对恐龙蛋类型进行了系统描述,并对前人报道的一些属种进行了分类订正。研究显示,天台恐龙蛋化石群基本上可分为7蛋科、12蛋属和15蛋种,代表了我国晚白垩世早期的恐龙蛋化石组合。本文简要报道了主要产自天台盆地赤城山组的双塘似蜂窝蛋(新蛋属、新修订种)、木鱼山半蜂窝蛋(新蛋属、新蛋种)、国清寺副蜂窝蛋(新修订种)、天台棱柱形蛋(新修订种)和张头槽马赛克蛋(新蛋属、新修订种)等3新蛋属、5新蛋种和修订种的主要鉴定特征,并建立一新蛋科——似蜂窝蛋科。  相似文献   

8.
Acilan C  Saunders WS 《Cell》2008,134(4):572-575
Having the correct number of centrosomes is crucial for proper chromosome segregation during cell division and for the prevention of aneuploidy, a hallmark of many cancer cells. Several recent studies (Basto et al., 2008; Kwon et al., 2008; Yang et al., 2008) reveal the importance of mechanisms that protect against the consequences of harboring too many centrosomes.  相似文献   

9.
10.
Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in α-helicity of the protein, and adoption of α-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one “K-segment,” a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic α-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of α-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.When plants encounter environmental stresses such as drought or low temperature, various responses take place to adapt to these conditions. Typical responses include increased expression of chaperones, signal transduction pathway and late embryogenesis abundant (LEA) proteins, osmotic adjustment, and induction of degradation and repair systems (Ingram and Bartels, 1996).Dehydrins (DHNs; LEA D11 family) are a subfamily of group 2 LEA proteins that accumulate to high levels during late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid (ABA) treatment (Svensson et al., 2002). Some DHNs are expressed constitutively during normal growth (Nylander et al., 2001; Rorat et al., 2004, 2006; Rodriguez et al., 2005). DHNs exist in a wide range of photosynthetic organisms, including angiosperms, gymnosperms, algae, and mosses (Svensson et al., 2002). DHNs are encoded by a dispersed multigene family and are differentially regulated, at least in higher plants. For example, 13 Dhn genes have been identified in barley (Hordeum vulgare), dispersed over seven genetic map locations (Choi et al., 1999; Svensson et al., 2002) and regulated variably by drought, low temperature, and embryo development (Tommasini et al., 2008). DHNs are localized in various subcellular compartments, including cytosol (Roberts et al., 1993), nucleus (Houde et al., 1995), chloroplast (Artus et al., 1996), vacuole (Heyen et al., 2002), and proximal to the plasma membrane and protein bodies (Asghar et al., 1994; Egerton-Warburton et al., 1997; Puhakainen et al., 2004). Elevated expression of Dhn genes generally has been correlated with the acquisition of tolerance to abiotic stresses such as drought (Whitsitt et al., 1997), salt (Godoy et al., 1994; Jayaprakash et al., 1998), chilling (Ismail et al., 1999a), or freezing (Houde et al., 1995; Danyluk et al., 1998; Fowler et al., 2001). The differences in expression and tissue location suggest that individual members of the Dhn multigene family have somewhat distinct biological functions (Close, 1997; Zhu et al., 2000; Nylander et al., 2001). Many studies have observed a positive correlation between the accumulation of DHNs and tolerance to abiotic stresses (Svensson et al., 2002). However, overexpression of a single DHN protein has not, in general, been sufficient to confer stress tolerance (Puhakainen et al., 2004).DHNs are subclassified by sequence motifs referred to as the K-segment (Lys-rich consensus sequence), the Y-segment (N-terminal conserved sequence), the S-segment (a tract of Ser residues), and the φ-segment (Close, 1996). Because of high hydrophilicity, high content of Gly (>20%), and the lack of a defined three-dimensional structure in the pure form (Lisse et al., 1996), DHNs have been categorized as “intrinsically disordered/unstructured proteins” or “hydrophilins” (Wright and Dyson, 1999; Garay-Arroyo et al., 2000; Tompa, 2005; Kovacs et al., 2008). On the basis of compositional and biophysical properties and their link to abiotic stresses, several functions of DHNs have been proposed, including ion sequestration (Roberts et al., 1993), water retention (McCubbin et al., 1985), and stabilization of membranes or proteins (Close, 1996, 1997). Observations from in vitro experiments include DHN binding to lipid vesicles (Koag et al., 2003; Kovacs et al., 2008) or metals (Svensson et al., 2000; Heyen et al., 2002; Kruger et al., 2002; Alsheikh et al., 2003; Hara et al., 2005), protection of membrane lipid against peroxidation (Hara et al., 2003), retention of hydration or ion sequestration (Bokor et al., 2005; Tompa et al., 2006), and chaperone activity against the heat-induced inactivation and aggregation of various proteins (Kovacs et al., 2008).Intrinsically disordered/unstructured proteins that lack a well-defined three-dimensional structure have recently been recognized to be prevalent in prokaryotes and eukaryotes (Oldfield et al., 2005). They fulfill important functions in signal transduction, gene expression, and binding to targets such as protein, RNA, ions, and membranes (Wright and Dyson, 1999; Tompa, 2002; Dyson and Wright, 2005). The disorder confers structural flexibility and malleability to adapt to changes in the protein environment, including water potential, pH, ionic strength, and temperature, and to undergo structural transition when complexed with ligands such as other proteins, DNA, RNA, or membranes (Prestrelski et al., 1993; Uversky, 2002). Structural changes from disorder to ordered functional structure also can be induced by the folding of a partner protein (Wright and Dyson, 1999; Tompa, 2002; Mouillon et al., 2008).The idea that DHNs interact with membranes is consistent with many immunolocalization studies, which have shown that DHNs accumulate near the plasma membrane or membrane-rich areas surrounding lipid and protein bodies (Asghar et al., 1994; Egerton-Warburton et al., 1997; Danyluk et al., 1998; Puhakainen et al., 2004). The K-segment is predicted to form a class A2 amphipathic α-helix, in which hydrophilic and hydrophobic residues are arranged on opposite faces (Close, 1996). The amphipathic α-helix is a structural element known to interact with membranes and proteins (Epand et al., 1995). Also, in the presence of helical inducers such as SDS and trifluoroethanol (Dalal and Pio, 2006), DHNs take on α-helicity (Lisse et al., 1996; Ismail et al., 1999b). We previously examined the binding of DHN1 to liposomes and found that DHNs bind preferentially to anionic phospholipids and that this binding is accompanied by an increase in α-helicity of the protein (Koag et al., 2003). Similarly, a mitochondrial LEA protein, one of the group III LEA proteins, recently has been shown to interact with and protect membranes subjected to desiccation, coupled with the adoption of amphipathic α-helices (Tolleter et al., 2007).Here, we explore the basis of DHN-vesicle interaction using K-segment deletion proteins. This study reveals that the K-segment is necessary and sufficient for binding to anionic phospholipid vesicles and that the adoption of α-helicity of DHN proteins can be attributed mainly to the K-segment.  相似文献   

11.
Heterotrimeric G proteins, consisting of Gα, Gβ, and Gγ subunits, are a conserved signal transduction mechanism in eukaryotes. However, G protein subunit numbers in diploid plant genomes are greatly reduced as compared with animals and do not correlate with the diversity of functions and phenotypes in which heterotrimeric G proteins have been implicated. In addition to GPA1, the sole canonical Arabidopsis (Arabidopsis thaliana) Gα subunit, Arabidopsis has three related proteins: the extra-large GTP-binding proteins XLG1, XLG2, and XLG3. We demonstrate that the XLGs can bind Gβγ dimers (AGB1 plus a Gγ subunit: AGG1, AGG2, or AGG3) with differing specificity in yeast (Saccharomyces cerevisiae) three-hybrid assays. Our in silico structural analysis shows that XLG3 aligns closely to the crystal structure of GPA1, and XLG3 also competes with GPA1 for Gβγ binding in yeast. We observed interaction of the XLGs with all three Gβγ dimers at the plasma membrane in planta by bimolecular fluorescence complementation. Bioinformatic and localization studies identified and confirmed nuclear localization signals in XLG2 and XLG3 and a nuclear export signal in XLG3, which may facilitate intracellular shuttling. We found that tunicamycin, salt, and glucose hypersensitivity and increased stomatal density are agb1-specific phenotypes that are not observed in gpa1 mutants but are recapitulated in xlg mutants. Thus, XLG-Gβγ heterotrimers provide additional signaling modalities for tuning plant G protein responses and increase the repertoire of G protein heterotrimer combinations from three to 12. The potential for signal partitioning and competition between the XLGs and GPA1 is a new paradigm for plant-specific cell signaling.The classical heterotrimeric G protein consists of a GDP/GTP-binding Gα subunit with GTPase activity bound to an obligate dimer formed by Gβ and Gγ subunits. In the signaling paradigm largely elucidated from mammalian systems, the plasma membrane-associated heterotrimer contains Gα in its GDP-bound form. Upon receiving a molecular signal, typically transduced by a transmembrane protein (e.g. a G protein-coupled receptor), Gα exchanges GDP for GTP and dissociates from the Gβγ dimer. Both Gα and Gβγ interact with intracellular effectors to initiate downstream signaling cascades. The intrinsic GTPase activity of Gα restores Gα to the GDP-bound form, which binds Gβγ, thereby reconstituting the heterotrimer (McCudden et al., 2005; Oldham and Hamm, 2008).Signal transduction through a heterotrimeric G protein complex is an evolutionarily conserved eukaryotic mechanism common to metazoa and plants, although there are distinct differences in the functional intricacies between the evolutionary branches (Jones et al., 2011a, 2011b; Bradford et al., 2013). The numbers of each subunit encoded within genomes, and therefore the potential for combinatorial complexity within the heterotrimer, is one of the most striking differences between plants and animals. For example, the human genome encodes 23 Gα (encoded by 16 genes), five Gβ, and 12 Gγ subunits (Hurowitz et al., 2000; McCudden et al., 2005; Birnbaumer, 2007). The Arabidopsis (Arabidopsis thaliana) genome, however, only encodes one canonical Gα (GPA1; Ma et al., 1990), one Gβ (AGB1; Weiss et al., 1994), and three Gγ (AGG1, AGG2, and AGG3) subunits (Mason and Botella, 2000, 2001; Chakravorty et al., 2011), while the rice (Oryza sativa) genome encodes one Gα (Ishikawa et al., 1995), one Gβ (Ishikawa et al., 1996), and either four or five Gγ subunits (Kato et al., 2004; Chakravorty et al., 2011; Botella, 2012). As expected, genomes of polyploid plants have more copies due to genome duplication, with the soybean (Glycine max) genome encoding four Gα, four Gβ (Bisht et al., 2011), and 10 Gγ subunits (Choudhury et al., 2011). However, Arabidopsis heterotrimeric G proteins have been implicated in a surprisingly large number of phenotypes, which is seemingly contradictory given the relative scarcity of subunits. Arabidopsis G proteins have been implicated in cell division (Ullah et al., 2001; Chen et al., 2006) and morphological development in various tissues, including hypocotyls (Ullah et al., 2001, 2003), roots (Ullah et al., 2003; Chen et al., 2006; Li et al., 2012), leaves (Lease et al., 2001; Ullah et al., 2001), inflorescences (Ullah et al., 2003), and flowers and siliques (Lease et al., 2001), as well as in pathogen responses (Llorente et al., 2005; Trusov et al., 2006; Cheng et al., 2015), regulation of stomatal movement (Wang et al., 2001; Coursol et al., 2003; Fan et al., 2008) and development (Zhang et al., 2008; Nilson and Assmann, 2010), cell wall composition (Delgado-Cerezo et al., 2012), responses to various light stimuli (Warpeha et al., 2007; Botto et al., 2009), responses to multiple abiotic stimuli (Huang et al., 2006; Pandey et al., 2006; Trusov et al., 2007; Zhang et al., 2008; Colaneri et al., 2014), responses to various hormones during germination (Ullah et al., 2002), and postgermination development (Ullah et al., 2002; Pandey et al., 2006; Trusov et al., 2007). Since the Gγ subunit appeared to be the only subunit that provides diversity in heterotrimer composition in Arabidopsis, it was proposed that all functional specificity in heterotrimeric G protein signaling was provided by the Gγ subunit (Trusov et al., 2007; Chakravorty et al., 2011; Thung et al., 2012, 2013). This allowed for only three heterotrimer combinations to account for the wide range of G protein-associated phenotypes.In addition to the above typical G protein subunits, the plant kingdom contains a conserved protein family of extra-large GTP-binding proteins (XLGs). XLGs differ from typical Gα subunits in that they possess a long N-terminal extension of unknown function, but they are similar in that they all have a typical C-terminal Gα-like region, with five semiconserved G-box (G1–G5) motifs. The XLGs also possess the two sequence features that differentiate heterotrimeric G protein Gα subunits from monomeric G proteins: a helical region between the G1 and G2 motifs and an Asp/Glu-rich loop between the G3 and G4 motifs (Lee and Assmann, 1999; Ding et al., 2008; Heo et al., 2012). The Arabidopsis XLG family comprises XLG1, XLG2, and XLG3, and all three have demonstrated GTP-binding and GTPase activities, although they differ from GPA1 in exhibiting a much slower rate of GTP hydrolysis, with a Ca2+ cofactor requirement instead of an Mg2+ requirement, as for canonical Gα proteins (Heo et al., 2012). All three Arabidopsis XLGs were observed to be nuclear localized (Ding et al., 2008). Although much less is known about XLGs than canonical Gα subunits, XLG2 positively regulates resistance to the bacterial pathogen Pseudomonas syringae and was immunoprecipitated with AGB1 from tissue infected with P. syringae (Zhu et al., 2009). xlg3 mutants, like agb1 mutants, are impaired in root-waving and root-skewing responses (Pandey et al., 2008). During the preparation of this report, Maruta et al. (2015) further investigated XLG2, particularly focusing on the link between XLG2 and Gβγ in pathogen responses. Based on symptom progression in xlg mutants, they found that XLG2 is a positive regulator of resistance to both bacterial and fungal pathogens, with a minor contribution from XLG3 in resistance to Fusarium oxysporum. XLG2 and XLG3 are also positive regulators of reactive oxygen species (ROS) production in response to pathogen-associated molecular pattern elicitors. The resistance and pathogen-associated molecular pattern-induced ROS phenotypes of the agg1 agg2 and xlg2 xlg3 double mutants were not additive in an agg1 agg2 xlg2 xlg3 quadruple mutant, indicating that these two XLGs and the two Gγ subunits function in the same, rather than parallel, pathways. Unfortunately, the close proximity of XLG2 and AGB1 on chromosome 4 precluded the generation of an agb1 xlg2 double mutant; therefore, direct genetic evidence of XLG2 and AGB1 interaction is still lacking, but physical interactions between XLG2 and the Gβγ dimers were shown by yeast (Saccharomyces cerevisiae) three-hybrid and bimolecular fluorescence complementation (BiFC) assays (Maruta et al., 2015). Localization of all three XLGs was also reexamined, indicating that XLGs are capable of localizing to the plasma membrane in addition to the nucleus (Maruta et al., 2015).Interestingly, several other plant G protein-related phenotypes, in addition to pathogen resistance, have been observed only in Gβ and Gγ mutants, with opposite phenotypes observed in Gα (gpa1) mutants. Traditionally, the observation of opposite phenotypes in Gα versus Gβγ mutants in plants and other organisms has mechanistically been attributed to signaling mediated by free Gβγ, which increases in abundance in the absence of Gα. However, an intriguing alternative is that XLG proteins fulfill a Gα-like role in forming heterotrimeric complexes with Gβγ and function in non-GPA1-based G protein signaling processes. If XLGs function like Gα subunits, the corresponding increase in subunit diversity could potentially account for the diversity of G protein phenotypes. In light of this possibility, we assessed the heterotrimerization potential of all possible XLG and Gβγ dimer combinations, XLG localization and its regulation by Gβγ, and the effect of xlg mutation on selected known phenotypes associated with heterotrimeric G proteins. Our results provide compelling evidence for the formation of XLG-Gβγ heterotrimers and reveal that plant G protein signaling is substantially more complex than previously thought.  相似文献   

12.
Au E  Fishell G 《Cell Stem Cell》2008,3(5):472-474
Recreating developmental structures in vitro has been a primary challenge for stem cell biologists. Recent studies in Cell Stem Cell (Eiraku et al., 2008) and Nature (Gaspard et al., 2008) demonstrate that embryonic stem cells can recapitulate early cortical development, enabling them to generate specific cortical subtypes.  相似文献   

13.
14.
Heterosis,one of the most important biological phenomena,refers to the phenotypic superiority of a hybrid over its genetically diverse parents with respect to many traits such as biomass,growth rate and yield.Despite its successful application in breeding and agronomic production of many crop and animal varieties,the molecular basis of heterosis remains elusive.The classic genetic explanations for heterosis centered on three hypotheses:dominance (Davenport,1908;Bruce,1910;Keeble and Pellew,1910;Jones,1917),overdominance (East,1908;Shull,1908) and epistasis (Powers,1944;Yu et al.,1997).However,these hypotheses are largely conceptual and not connected to molecular principles,and are therefore insufficient to explain the molecular basis of heterosis (Birchler et al.,2003).Recently,many studies have explored the molecular mechanism of heterosis in plants at a genome-wide level.These studies suggest that global differential gene expression between hybrids and parental lines potentially contributes to heterosis in plants (e.g.,Swanson-Wagner et al.,2006;Zhang et al.,2008;Wei et al.,2009;Song et al.,2010).Research suggests that genetic components,including cis-acting elements and trans-acting factors,are critical regulators of differential gene expression in hybrids (Hochholdinger and Hoecker,2007;Springer and Stupar,2007;Zhang et al.,2008).However,other research indicates that epigenetic components,the regulators of chromatin states and genome activity,also have the potential to impact heterosis (e.g.,Ha et al.,2009;He et al.,2010;Groszmann et al.,2011;Barber et al.,2012;Chodavarapu et al.,2012;Greaves et al.,2012a;Shen et al.,2012).  相似文献   

15.
16.
17.
The liver plays a central role in lipid and glucose metabolism. Two studies in this issue (Kubota et al., 2008; Dong et al., 2008) on the insulin-signaling adaptors Irs1 and Irs2 prompt a critical reappraisal of the physiology of fasting and of the integrated control of hepatic insulin action.  相似文献   

18.
The recent identification of cardiac progenitor cells (CPCs) provides a new paradigm for studying and treating heart disease.To realize the full potential of CPCs for therapeutic purposes,it is essenti...  相似文献   

19.
Activation of caspase-3 is generally acknowledged as a penultimate step in apoptotic cell death pathways. Two studies in this issue of Cell Stem Cell (Fujita et al., 2008; Janzen et al., 2008) provide compelling data to demonstrate that caspase-3 is also a conserved inductive cue for stem cell differentiation.  相似文献   

20.
Geschwind & Galaburda (1985a,b,c, Archs Neurol., Chicago 42, 428, 521, 634) and D?rner et al. (1983a,b, Expl. Clin. Endocrinol. 81, 88, 83) have hypothesised, respectively, that the testosterone levels to which foetuses are exposed in utero affect postnatal laterality and sexual orientation. A means of testing the two hypotheses jointly is proposed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号