首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented for the presence of nitrite reductasein citrus leaves. The enzyme has a Km for nitrite of 45 mu andis inhibited by cyanide. However, unlike citrus nitrate reductase(l), it is probably not a metalloflavo protein, although itmay be related to iron. In addition to the enzymatic nitrite reduction, non-enzymaticnitrite reduction was present in citrus leaf preparations. Underin vivo assay conditions nitrite reduction in one-month-oldleaves was not inhibited by cyanide, in contrast with three-month-oldleaves in which nitrite reduction was almost completely inhibited.Thus it appears that in very young citrus leaves most of thenitrite reduction is non-enzymatic. 1 Contribution from The Volcani Center, Agricultural ResearchOrganization, P. O. B. 6, Bet Dagan, Israel. Series 1972.........2256AE. (Received November 28, 1972; )  相似文献   

2.
Cultures of the water fern Azolla pinnata R, Br. exposed for1 week to atmospheric NO2 (50, 100 or 200 nl l-1) induced additionallevels of nitrate reductase (NaR) protein and nitrite reductase(NiR) activity. At low concentrations of NO2 (50 nl l-1), nitratederived from NO2 provides an alternative N source for Azollabut does not affect rates of acetylene reduction. However, thesymbiotic relationship between Azolla and its endosymbiont,Anabaena azollae is only affected adversely by high concentrations(100 and 200 nl l-1) of atmospheric NO2. The resultant decreasesin rate of growth, nitrogen fixation, heterocyst formation,and overall nitrogen cycling are probably due to the additionalaccumulation of N products derived from higher levels of atmosphericNO2. Parallel increases in levels of polyamines suggest thatAzolla partially alleviates these harmful effects by incorporatingsome of the extra NO2-induced N into polyamines.Copyright 1994,1999 Academic Press Azolla-Anabaena symbiosis, nitrogen dioxide pollution, nitrogen metabolism, polyamines  相似文献   

3.
A ferredoxin was isolated from non-photosynthetic tissues ofthe lower storage root of radish (Raphanus sativus L. var. acantiformiscultivar Miyashige) in a pure form by conventional means. Itshowed the characteristic features in its absorption spectrumof chloroplast-type ferredoxin. However, amino acid compositionand amino (N)- terminal sequence were different from those ofradish leaf ferredoxin. Root ferredoxin was able to transferelectrons from dithionite to nitrite reductase [EC 1.7.7.1 [EC] ]isolated from mung bean seedling roots and also to mediate NADP+photoreduction in spinach broken chloroplasts. It therefore is suggested that a set of distinctive molecularspecies of ferredoxin is present in non-photosynthetic tissuesand functions as a redox mediator in ferredox-independent enzymesystems. (Received October 18, 1985; Accepted January 16, 1986)  相似文献   

4.
Crystalline cytochrome c-553 was obtained from Porphyra yezoensisUeda. The cytochrome in areduced form was modified to show anitrite-reducing activity after appropriate treatment with heat,hydrogen peroxide, or photooxidation using methylene blue asthe electron acceptor, but the reducing activity was far lowerthan that of the nitrite reductase isolated from this alga.The modified cytochrome c-553 was autooxidizable and showedan absorption spectrum resembling that of cytochrome c-553 inthe oxidized form except for slight shifts of the absorptionmaximumin the -band region toward shorter wavelengths. 1 Present address: Department of Biological Sciences, Universityof Tsukuba, Sakura-Mura, Ibaraki, 300-31 Japan. 2 Present address: Department of Fisheries, College of Agricultureand Veterinary Medicine, Nihon University, Shimouma, Setagaya-ku,Tokyo, 154 Japan. (Received June 10, 1975; )  相似文献   

5.
The reduction of nitrate and nitrite in leaf disks from sevendi- and two monocotyledonous species under in vivo nitrate reductaseassay conditions was studied using 15N-labeled substrates. Significantreduction of both nitrate and nitrite into ammonia and aminoacids was detected under aerobic conditions (in an atmosphereof air): in some cases, the amount of nitrate-N reduced to ammoniaand amino acids was more than that remaining as nitrite. Anaerobicincubation (under an atmosphere of N2 gas) enhanced the accumulationof nitrite, but the subsequent reduction to the basic nitrogencompounds was 40 to 180% of the aerobic rates. The present examinationindicates that in vivo assays of nitrate reductase under aerobicconditions may give greatly underestimated results due to nitritereduction and that exclusion of oxygen from the in vivo assaymixture is desirable in terms of the quantity of nitrite formed.n-Propanal treatment increased nitrite accumulation under aerobicbut not under anaerobic conditions, and depressed the incorporationof nitrate-N into basic fractions under both conditions. Therefore,addition of n-propanol may be desirable for assays under aerobicconditions. No significant difference in the reduction of nitratesupplied as sodium and potassium salts was observed on the nitriteformation and on the incorporation of nitrate-N into basic fractions. 15N experiments on dark assimilation of nitrate, nitrite andammonia into amino acids in wheat leaves showed that these threenitrogen sources were assimilated through the same route andthat the glutamine synthetase/glutamate synthase pathway wasthe major route. With anaerobic treatment, the incorporationof nitrogen into alanine and serine remained at relatively high,but the incorporation into aspartate and asparagine was muchlower than in the cases of aerobic treatment. (Received July 11, 1981; Accepted October 3, 1981)  相似文献   

6.
Nitrite reductase was purified about 40-fold from the blue-greenalga Anabaena cylindrica by acetone precipitation and chromatographyon DEAE-cellulose columns. The nitrite reductase had its pHoptima at about 7.6 with Tris-HCl and at about 7.4 with phosphatewhen reduced methyl viologen was used as an electron donor.The Km's for nitrite, methyl viologen and ferredoxin were 510–55,210–4 and 510–6M, respectively. A stoichiometryof one molecule of ammonia formation per one molecule of nitritedisappearance was confirmed. Ferredoxin which had been reducedeither chemically with dithionite or enzymatically with NADPHin the presence of diaphorase was active as an electron donor.Dithionite-reduced FAD and FMN were inactive. NADPH could notgive electrons directly to nitrite reductase. Hydroxylaminereductase was segregated from nitrite reductase by DEAE-cellulosecolumn chromatography. Purified nitrite reductase showed noactivity for sulfite reduction. A molecular weight of 68,000was estimated for nitrite reductase using a calibrated SephadexG-200 column. 1This work was supported by grants 4090 and 955008 from theMinistry of Education. 2This work was supported by grants 4090 and 955008 from theMinistry of Education. 2 Present address: Department of Botany,Faculty of Science, University of Tokyo, Tokyo.  相似文献   

7.
Growth of Pseudomonas stutzeri(VAN NIEL strain) in the presenceof a limiting amount of nitrate under anaerobic conditions ischaracterized by 2 logarithmic phases separated distinctly byan intermediate phase where the growth rate is very low. Inthe first logarithmic phase nitrate is reduced stoichiometricallyto nitrite stage, and in the second phase nitrite is reducedto nitrogen gas. The nitrite reducing activity of cells in the second growthphase is 3–4 times higher than that of cells in the firstphase. The rise in nitrite reducing activity is correlated witha remarkable increase in the content of cytochromes a2 and c-552. 1Present address: Department of Biochemistry, Hiroshima UniversitySchool of Dentistry, Hiroshima, Japan. 2Present address: Institute of Molecular Biology, Faculty ofScience, Nagoya University, Nagoya, Japan. (Received June 16, 1969; )  相似文献   

8.
The growth rates of four saline-lake diatom taxa were measuredunder varying conditions of salinity (5, 8 and 11), brine type(sulfate- versus bicarbonate-dominated) and nitrogen form (NH4+versus NO3), using a full factorial design. With NO3as the nitrogen source, Cyclotella quillensis, Cymbella pusillaand Anomoeoneis costata exhibited lower growth rates in thesulfate versus bicarbonate media. The strain of Chaetoceroselmorei used in these experiments, isolated from a sulfate-dominatedlake, was unable to grow on NO3 alone. In the NH4+ treatments,neither salinity nor brine type affected the growth rates ofC.quillensis or C.elmorei. When supplied with NH4+, C.pusillaand A.costata had higher growth rates in the bicarbonate versussulfate media, although for C.pusilla the difference on NH4+was not as great as on NO3. The impact of brine typeon NO3 use is consistent with the theory that sulfateinhibits molybdate uptake, as molybdenum is required for NO3use but not NH4+. Cymbella pusilla was the only taxon affectedby changes in salinity. The four taxa used in these experimentsare frequently found in saline lakes and saline-lake sediments,hence they are used in paleoclimate reconstructions; the resultspresented here provide additional information that may enhancethese diatom-based reconstructions.  相似文献   

9.
Shikimate : NADP oxidoreductase (5-dehydroshikimate reductase;EC 1.1.1.25 [EC] ) was extracted from immature bamboo and partiallypurified. The optimal pH of the enzyme was found to be 11.0.The enzyme was demonstrated to be NADP specific. Michaelis constants (Km) for NADP and shikimic acid as substratewere found to be 1.4 10–4M and 2.0 10–4M, respectively,at pH 8.0. No metal requirement could be demonstrated sincelittle change in enzyme activity was observed on addition ofethylenediamine-tetraacetic acid (EDTA). On the other hand,the enzyme was potently inhibited by p-chloromercuribenzoicacid (PCMB). 5-Dehydroshikimate reductase was demonstrated to be widely distributedin woody plants such as bamboo, udo (Aralia cordata), asparagus(Asparagus officinalis) and tulip tree (Liriodendron tulipifera)as well as other higher plants. Shikimic acid content was comparatively low at the top, butafter reaching maximal content in the part just below the top,it began to decrease toward lower parts of bamboo. The enzymeactivity at the top was the highest and seemed to decrease towardthe tissues of lower parts. However the fact that the activitywas still maintained at a certain level even in the aged tissuessuggests that 5-dehydroshikimate reductase might play a significantrole for biosynthesis of lignin. (Received September 5, 1966; )  相似文献   

10.
Nitrite accumulation may result from unbalance between nitratereductase which produces nitrite and nitrite reductase whichremoves it. In the first experiment, using three light levelsand three nitrate levels, on Lolium, maize, and oats, both enzymesresponded to increased light, though not always significantly.The effect of nitrate was more variable. Nitrate reductase activityincreased to the intermediate or highest level of nitrate, butthere was no clear response in nitrite reductase activity orin nitrite concentration. In the second experiment, using fournitrate levels but only one, high, light intensity on Loliumand barley, the results were clearer. With increasing nitratesupply, nitrate reductase activity increased more than nitritereductase activity. This was particularly marked in Lolium,in which nitrite accumulated at the highest nitrate supply.Thus high nitrate supply unbalances the two enzymes in the directionleading to nitrite accumulation.  相似文献   

11.
During induction of nitrate reductase in Chlorella vulgaris,synthesis of the precursor, demolybdo cytochrome c reductase,exceeds the synthesis of active enzyme. Evidence is also presentedwhich shows that the purification procedure of Funkhouser etal. [(1980) Plant Physiol. 65: 939] separates demolybdo cytochromec reductase from active nitrate reductase. 1Supported in part by a grant to B. V. from the Deutsche Forschungsgemeinschaftand a contribution of the Texas Agricultural Experiment Station. (Received July 27, 1983; Accepted September 13, 1983)  相似文献   

12.
An investigation was made to determine the effects of univalentcations as activators on the formation of nitrate reductaseand nitrite reductase in rice seedlings. K+ functioned moreeffectively as a univalent cation activator than did other univalentcations examined. Substitution of Rb+ for K+ resulted in stimulationof nitrate reductase formation at about half the rate obtainedwith K+. There was no effect on nitrite reductase formation.Na+ could be partially substituted for K+ in the formation ofboth enzymes. NH4+ slightly inhibited formation of the enzymes.In the absence of univalent cations, enzyme formation proceededat a slower rate during the initial 15-hr period, but thereafterproceeded at a higher rate. This delayed formation was not observedin the presence of K+. Results from inhibitor experiments suggestthat K+ stimulates the formation of nitrate reductase and nitritereductase. In conclusion, when nitrate nitrogen is supplied to rice plantsutilization of the nitrogen may be accelerated by increasedformation of enzymes involved in nitrate assimilation in thepresence of K+. (Received February 21, 1969; )  相似文献   

13.
The localization of dissimilatory nitrate and nitrite reductasesof a denitrifying phototrophic bacterium, Rhodopseudomonas sphaeroidesforma sp. denitrificans, was investigated. Nitrate and nitritereductases were located in the periplasmic space of the bacteriumgrown anaerobically in the presence of nitrate either in lightor in darkness. Chromatophores showed nitrate and nitrite reductaseactivities when dithionite-reduced benzyl viologen was an electrondonor; this suggests that the enzymes were trapped inside thevesicles. 1Present address: Japanese Red Cross Central Blood Center, Hiroo4-1-31, Shibuyaku, Tokyo 150, Japan. 2Present address: Plant Growth Laboratory, University of California,Davis, California 95616, U.S.A. (Received November 7, 1979; )  相似文献   

14.
Hydrosulfite-reduced FMN served as an electron donor for nitratereductase purified from broad bean leaves. FMN was successfullyreplaced with BV. The flavine nucleotide nitrate reductase hadits pH optima at about 7.8 with phosphate buffer and at about7.4 with Tris-HCl buffer. The Km's for nitrate and FMN were3.7 ? 10–4 M and 3.7 ? 10–5 M, respectively. NADH2: nitrate reductase activity was completely inhibited by0.1 mM p-CMB, whereas FMNH2: nitrate reductase activity wasnot. Inhibited activity was restored by the addition of cysteine.A sulfhydryl enzyme is involved in the NADH2: nitrate reductasesystem but not in the FMNH2 : nitrate reductase system. NADH2and FMNH2 probably feed electrons into the electron transportchain at different sites. The nitrate reductase preparationhad an NADH2-specific diaphorase activity which was almost completelyinhibited by 0.1 mM p-CMB. The NADH2-specific diaphorase mayform the sulfhydryl enzyme which mediates electron transferbetween NADH2 and nitrate. (Received May 6, 1969; )  相似文献   

15.
The photoreduction of dioxygen in spinach thylakoid membraneswas enhanced about 10-fold by the FAD-enzyme monodehydroascorbateradical (MDA) reductase at 1 µM. The primary photoreducedproduct of dioxygen catalyzed by MDA reductase was the superoxideradical, as evidenced by the inhibition of photoreduction ofCyt c by superoxide dismutase. The apparent Km for dioxygenof the MDA reductase-dependent photoreduction of dioxygen was100 µM, higher by one order of magnitude than that observedwith thylakoid membranes only. Glutathione reductase, ferredoxin-NADP+reductase, and glycolate oxidase also mediated the photoproductionof superoxide radicals in thylakoid membranes at rates similarto those with MDA reductase. Among these flavoenzymes, MDA reductaseis the most likely mediator stimulating the photoreduction ofdioxygen in chloroplasts; its function in the protection fromphotoinhibition under excess light is discussed. (Received February 24, 1998; Accepted May 19, 1998)  相似文献   

16.
Reduction of nitrate to nitrite by particulate preparationsof Anabaena cylindrica was investigated. Preparations whichshowed high activity of nitrate reductase were obtained by sonication(preparation A) or acetone treatment (preparation B). The preparationA also showed a high activity of DPIP-ascorbate photooxidation.The nitrate reductase system accepted electrons from eitherreduced ferredoxin (preparation A & B) or NADH (preparationB), but not directly from NADPH. Ferredoxin was active whenreduced either by action of photochemical system I or by NADPHand NADP-reductase, but dithionite-reduced ferredoxin was completelyinactive. Ferredoxin could be replaced with methyl viologen,benzyl viologen and diquat. Reduced FMN and FAD could serveas electron donors, but the affinity of the reductase towardthese flavin compounds was very low. 1 This work was supported by grants from the Ministry of Education(4093 and 95612) and from the National Institutes of Health,U.S. (GM-11300).  相似文献   

17.
The transport of 14C-IAA has been studied in Cucurbita maxima.IAA fed to the leaf of an intact plant moves rapidly in a non-polarfashion in the phloem. Collection and analysis of exudate fromsevered sieve tubes showed that there was no metabolic conversionor complexing of IAA for several hours. Polar movement of 14C-IAA in isolated internode segments occursat rates an order of magnitude slower than movement in the phloem.The importance of discrete and isolated channels of hormonetransport, that vary in direction and rates, is briefly discussed.  相似文献   

18.
Nitrite reductase was extracted from the red alga Porphyra yezoensisUeda and purified through precipitation with ammonium sulfate,column chromatographies, and polyacrylamide gel disk electrophoresis.The enzyme preparation thus obtained showed a single band ondisk electrophoresis. The absorption spectrum had three maxima at 385 nm (Soret band),580 nm (-band), and 278 nm; the ratio of absorbance of the Soretband to the -band was 4.3. The molecular weight and the numberof amino acid residues were estimated to be 63,000 and 601,respectively. The enzyme activity was optimal at around pH 7.5, and its activitywas heat labile as indicated by reduction of activity by about70% when heated at 37°C for 10 min. The enzyme used ferredoxin and methyl viologen, but not NADP+or NAD+, as the electron carriers. Moreover, reduced forms ofthe latter two showed no effect on its activity. Km values ofthis enzyme for NO2, Fd, and MV were 8.1 x 10–4M, 4.3 x 10–8 M, and 3.7 x 10–4 M, respectively.Almost half of its activity was lost when potassium cyanidewas added at a concentration as low as 10–5 M, and theKi value was 1.8 x 10–5 M. Thus, the nitrite reductaseof Porphyra must be systematically grouped in EC 1.7.7.1 [EC] . Itresembled closely that of Chlorella, except for the amountsof some amino acids. 1 Present address: Department of Biological Sciences, Universityof Tsukuba, Sakura-Mura, Ibaraki, 300-31 Japan. 2 Present address: Department of Fisheries, College of Agricultureand Veterinary Medicine, Nihon University, Shimouma, Setagaya-ku,Tokyo, 154 Japan. (Received June 10, 1975; )  相似文献   

19.
Post-transcriptional Control of Nitrate Reductase Formation in Green Algae   总被引:1,自引:1,他引:0  
Cycloheximide (2·0 µg ml–1) inhibits theincorporation of [14C]phenylalanine and [14C]adenine into insolublecompounds in Ankistrodesmus braunii. 6-Methylpurine (1·0mM) inhibits only the incorporation of [14C]adenine and it isconcluded that it inhibits RNA synthesis. When ammonium-growncells of Ankistrodesmus or Chlorella are nitrogen-starved orwhen ammonium-grown cells of Dunalitlla are resuspended in nitratemedium, the appearance of nitrate reductase in these organismsis not inhibited by 6-methylpurine. The appearance of nitratereductase activity in Ankistrodesmus or Chlorella is inhibitedby 6-methylpurine when ammonium-grown organisms are preincubatedwith this substance for 1-2 h before nitrogen starvation. Itis concluded that cells growing with ammonium and lacking nitratereductase activity nevertheless contain preformed mRNA for nitratereductase synthesis.  相似文献   

20.
Cultivated Agave mapisaga and A. salmiana can have an extremelyhigh above-ground dry-weight productivity of 40 Mg ha–1yr–1. To help understand the below-ground capabilitiesthat support the high above-ground productivity of these Crassulaceanacid metabolism plants, roots were studied in the laboratoryand in plantations near Mexico City. For approximately 15-year-oldplants, the lateral spread of roots from the plant base averaged1.3 m and the maximal root depth was 0.8 m, both considerablygreater than for desert succulents of the same age. Root andshoot growth occurred all year, although the increase in shootgrowth at the beginning of the wet season preceded the increasein growth of main roots. New lateral roots branching from themain roots were more common at the beginning of the wet season,which favoured water uptake with a minimal biomass investment,whereas growth of new main roots occurred later in the growingseason. The root: shoot dry weight ratio was extremely low,less than 0.07 for 6-year-old plants of both species, and decreasedwith plant age. The elongation rates of main roots and lateralroots were 10 to 17 mm d–1, higher than for various desertsucculents but similar to elongation rates for roots of highlyproductive C3 and C4 agronomic species. The respiration rateof attached main roots was 32 µmol CO2 evolved kg–1dry weight s–1 at 4 weeks of age, that of lateral rootswas about 70% higher, and both rates decreased with root age.Such respiration rates are 4- to 5-fold higher than for Agavedeserti, but similar to rates for C3 and C4 agronomic species.The root hydraulic conductivity had a maximal value of 3 x 10–7ms–1 MPa–1 at 4 weeks of age, similar to A. deserti.The radial hydraulic conductivity from the root surface to thexylem decreased and the axial conductivity along the xylem increasedwith root age, again similar to A. deserti. Thus, although rootsof A. mapisaga and A. salmiana had hydraulic properties perunit length similar to those of a desert agave, their highergrowth rates, their higher respiration rates, and the greatersoil volume explored by their roots than for various desertsucculents apparently helped support their high above-groundbiomass productivity Key words: Crassulacean acid metabolism, productivity, root elongation rate, root system, water uptake  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号