首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In plants, the vacuole is a multifunctional organelle with an important role in the maintenance of the intracellular space. Tonoplast membranes are highly permeable to water due to their content in aquaporins TIPs (Tonoplast Intrinsic Proteins) that allow the rapid water influx creating an internal turgor pressure responsible for cell expansion, elongation and shape.  相似文献   

2.
采用硅胶柱层析法从中药山栀子中分离制备主要药效成分京尼平甙,色谱条件:常规柱(2.5×30cm),固定相:柱层析硅胶;流动相∶乙醇-石油醚(1∶5,1∶3)。样品通过薄层层析以及600~190nm波长扫描定性鉴定后,用高效液相色谱法(HPLC)检测纯度,结果表明纯度为97.6%。  相似文献   

3.
The present phytochemical investigations of Gardenia jasminoides Ellis resulted in the isolation of ten iridoids (110) and ten pyronane monoterpenoids (1120). Among them, compounds 11 and 18 were obtained from this species for the first time. The chemotaxonomic importance of these compounds was also summarized.  相似文献   

4.
We describe a single aquaporin gene in Toxoplasma gondii which, surprisingly, has only 28% sequence similarity to the aquaglyceroporin of another apicomplexan parasite, Plasmodium falciparum. Sequence comparisons showed 47% similarity to water-specific plant aquaporins and the conservation of typical pore-forming residues. We established that the Toxoplasma aquaporin protein is a bifunctional membrane pore with intermediate water and high glycerol permeability. Furthermore, we identified hydroxyurea, an antineoplastic agent with inhibitory effects on parasite proliferation, as a permeant of this channel.  相似文献   

5.
为探究观赏栀子在不同遮光条件下生长和光合及氮、磷、钾(N、P、K)分配的规律,该研究对3种观赏栀子设置5种不同的遮光处理(0%、60%、70%、80%、90%),通过对观赏栀子的生长和光合及各器官N、P、K含量进行统计与分析,探究了不同遮光处理对观赏栀子栽植效果的影响。结果表明:(1)60%和0%遮光率的大花栀子、80%和70%遮光率的雀舌栀子、0%遮光率的花叶栀子均长势较好。(2)随着遮光率的增加,雀舌栀子和花叶栀子的净光合速率、胞间CO2浓度、蒸腾速率逐渐降低,气孔导度、水分瞬时利用率在遮光率60%下达到最大值。(3)大花栀子总N量最高,器官含N量高低排序为叶、根、茎; 雀舌栀子总P量最高,器官含P量排序为根、茎、叶; 大花栀子在90%遮光率下含K量最高。综合考虑认为,雀舌栀子更耐荫蔽,适合在80%和70%的遮光条件下生长; 大花栀子次之,适合在60%和0%遮光条件下生长; 花叶栀子最不耐荫,适合在0%遮光条件下生长。  相似文献   

6.
7.
8.
To investigate the role of Peroxidase and its physiological significance under Karnal Bunt (KB) were determined in resistant (HD-29) and susceptible genotype (WH-542) of wheat during different developmental stages. The enzymes were expressed constitutively in both the susceptible and resistant genotype. In gel assay and differential expression analysis of POD was significantly higher (p >0.05) in Sv and S2, than the S1 and S3 stages. in silico analysis of Peroxidase for eg. physico-chemical properties, secondary structural features and phylogenetic classification for comparative analysis. Motif and Domain analysis of Peroxidase by MEME, to be important for the biological functions, and studies of evolution. Our results clearly indicate that the enhanced expression of POD at the WS2 stage, which reinforces its role in stage dependent immunity against Karnal bunt and role of POD metabolism provides genotype and stage dependant structural barrier resistance in wheat against KB.  相似文献   

9.
为探讨栀子(Gardenia jasminoides)果实中藏花素的合成机理,克隆了栀子类胡萝卜素生物合成的关键酶八氢番茄红素合成酶(GjPSY)基因的全长cDNA。结果表明,推导的GjPSY氨基酸序列与双子叶植物来源的GjPSY亲缘关系较近。采用HPLC检测栀子果实中的藏花素-1含量为(3.96±1.48) mg g-1,在叶片中未检出。通过RT-PCR分析表明,GjPSY在栀子叶片和果实中均有表达,且表达水平一致。因此推测,GjPSY的转录水平与果实中藏花素-1的合成无关。  相似文献   

10.

Background and Aims

Seemannaralia appears to be fundamentally different from all other Araliaceae in the presence of a well-developed symplicate zone in its gynoecium, as well as in the ovule insertion in the symplicate zone (rather than in the cross-zone). The present investigation re-examined the floral structure of Seemannaralia with emphasis on the morphology and evolution of its gynoecium.

Methods

Flowers and fruits of Seemannaralia gerrardii at various developmental stages were examined using light microscopy and scanning electron microscopy.

Key Results

Ovaries in the flowers of Seemannaralia are bilocular. Each ovary locule corresponds to a carpel whose ascidiate part is distinctly longer than the plicate part. Each carpel contains one fertile ovule attached to the cross-zone, and one sterile ovule as well. The fruit is unilocular: its central cavity is occupied by a single large seed. In the course of fruit development, the growth of one ovule stops while another ovule develops into the mature seed. When this ovule outgrows the available space in the locule, the septum is ruptured, forming a united cavity of two carpels.

Conclusions

Despite literature data, the synascidiate zone is well developed in the gynoecium of Seemannaralia, and the ovules are attached to the cross-zone. Its preanthetic and anthetic gynoecium has nearly the same structure as gynoecia of most other Araliaceae. The Seemannaralia fruit resembles the paracarpous gynoecium but its ground plan is very different because the central cavity is formed by mechanical rupture of the septum. The term ‘pseudoparacarpy’ (‘false paracarpy’) is proposed to describe this condition, which has not been reported to date for indehiscent fruits in any taxa other than Seemannaralia. In this genus, the pseudoparacarpy has probably resulted from a decrease in seed number in the course of the transition from zoochory to anemochory.  相似文献   

11.
Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla), were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.  相似文献   

12.
13.
14.
15.
16.
The three-dimensional crystal structure of tomato (Lycopersicon esculentum) beta-mannanase 4a (LeMAN4a) has been determined to 1.5 A resolution. The enzyme adopts the (beta/alpha)(8) fold common to the members of glycohydrolase family GH5. The structure is comparable with those of the homologous Trichoderma reesei and Thermomonospora fusca beta-mannanases: There is a conserved three-stranded beta-sheet located near the N terminus that stacks against the central beta-barrel at the end opposite the active site. Three noncanonical beta-helices surround the active site. Similar helices are found in T. reesei but not T. fusca beta-mannanase. By analogy with other beta-mannanases, the catalytic acid/base residue is E204 and the nucleophile residue is E318. The active site cleft of L. esculentum beta-mannanase most closely resembles that of the T. reesei isozyme. A model of substrate binding in LeMAN4a is proposed in which the mannosyl residue occupying the -1 subsite of the enzyme adopts the (1)S(5) skew-boat conformation.  相似文献   

17.
18.
Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species.Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors.  相似文献   

19.
Microorganisms, especially endophytic fungi that reside in the tissue of living mangrove plants, seem to play a major role in meeting the general demand for new biologically active substances. During the course of screening for biologically active secondary metabolites from marine microorganisms, an antibiotic compound containing an indole and a diketopiperazine moiety was isolated from the culture medium of Penicilliumchrysogenum, (MTCC 5108), an endophytic fungus on the mangrove plant Porteresiacoarctata (Roxb.). The cell free culture medium of P. chrysogenum showed significant activity against Vibriocholerae, (MCM B-322), a pathogen causing cholera in humans. Bioassay guided chemical characterization of the crude extract led to the isolation of a secondary metabolite possessing a molecular formula C19H21O2N3. Its antibacterial activity was comparable with standard antibiotic, streptomycin. This compound (1) was found to be (3,1′-didehydro-3[2″(3′″,3′″-dimethyl-prop-2-enyl)-3″-indolylmethylene]-6-methyl pipera-zine-2,5-dione) on the basis of mass spectrometry, infrared spectroscopy and one and two-dimensional nuclear magnetic resonance analysis.  相似文献   

20.
The new genus Coynemagen. n. is described as parasite of the two passalid beetles from Cuba: Passalus interstitialis Escholtz, 1829 (type host) and Passalus pertyi Kaup, 1869. Females are characterized by the shape of their cephalic end, cervical cuticle unarmed, a sub-cylindrical procorpus with its base abruptly dilated, fore region of intestine dilated as a sac-like structure, genital system didelphic-amphidelphic and eggs markedly ovoid and smooth-shelled. Males have a digestive system similar to females, tail sharply pointed, bearing a Y-like thickening of the dorsal cuticle. They also present a big, median, mammiform pre-cloacal papillae and a pair of small, sub-dorsal pre-cloacal papillae anterior to the cuticular thickening of the tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号