首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in cardiac output during sustained maximal ventilation in humans   总被引:2,自引:0,他引:2  
To determine the increment in cardiac output and in O2 consumption (Vo2) from quiet breathing to maximal sustained ventilation, Vo2 and cardiac output were measured using an acetylene rebreathing technique in five subjects. Cardiac output and Vo2 were measured multiple times in each subject at rest and during sustained maximal ventilation. During maximal ventilation subjects breathed 5% CO2 to prevent hypocapnia. The increase in cardiac output from rest to maximal breathing was taken as an estimate of respiratory muscle blood flow and was used to calculate the arteriovenous O2 content difference across the respiratory muscles from the Fick equation. Cardiac output increased by 4.3 +/- 1.0 l/min (mean +/- SD), from 5.6 +/- 0.7 l/min at rest to 9.9 +/- 1.1 l/min, during maximal ventilations ranging from 127 to 193 l/min. Vo2 increased from 312 +/- 29 to 723 +/- 69 ml/min during maximal ventilation. O2 extraction across the respiratory muscles during maximal breathing was 9.6 +/- 1.0 vol% (range 8.5 to 10.7 vol%). These values suggest an upper limit of respiratory muscle blood flow of 3-5 l/min during unloaded maximal sustained ventilation.  相似文献   

2.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

3.
Pulmonary ventilation was assessed in the hibernating and arousing golden-mantled ground squirrel by plethysmography and end-tidal gas analysis. The heart rate and electrocardiogram were monitored simultaneously with ventilation. The hibernating squirrels displayed a periodic respiratory pattern characterized by a variable breathing frequency and tidal volume and often exhibited characteristics of Cheyne-Stokes respiration. Apneic periods averaging 8 to 9 min resulted in a low overall breathing frequency. Cardiac activity in the hibernating ground squirrel was characterized by arrhythmias which correlated with ventilation and by alterations in the electrocardiogram typically seen in hibernating animals. Arousal from hibernation was accompanied by: (i) a replacement of periodic by continuous ventilation, (ii) a 25-fold increase in VE in the first hour which was accounted for by the increment in breathing frequency, and (iii) a marked decrease in the ratio of heart beats to breaths. The techniques developed in the present study will permit further quantitative investigations of pulmonary ventilation and its control in hibernating animals.  相似文献   

4.
We examined the effects of dead space (VD) loading on breathing pattern during maximal incremental exercise in eight normal subjects. Addition of external VD was associated with a significant increase in tidal volume (VT) and decrease in respiratory frequency (f) at moderate and high levels of ventilation (VI); at a VI of 120 l/min, VT and f with added VD were 3.31 +/- 0.33 liters and 36.7 +/- 6.7 breaths/min, respectively, compared with 2.90 +/- 0.29 liters and 41.8 +/- 7.3 breaths/min without added VD. Because breathing pattern does not change with CO2 inhalation during heavy exercise (Gallagher et al. J. Appl. Physiol. 63: 238-244, 1987), the breathing pattern response to added VD is probably a consequence of alteration in the PCO2 time profile, possibly sensed by the carotid body and/or airway-pulmonary chemoreceptors. The increase in VT during heavy exercise with VD loading indicates that the tachypneic breathing pattern of heavy exercise is not due to mechanical limitation of maximum ventilatory capacity at high levels of VT.  相似文献   

5.
Feedback from muscles stimulates ventilation at the onset of passive movement. We hypothesized that central neural activity via a cognitive task source would interact with afferent feedback, and we tested this hypothesis by examining the fast changes in ventilation at the transition from rest to passive leg movement, under two conditions: 1) no task and 2) solving a computer-based puzzle. Resting breathing was greater in condition 2 than in condition 1, evidenced by an increase in mean +/- SE breathing frequency (18.2 +/- 1.1 vs. 15.0 +/- 1.2 breaths/min, P = 0.004) and ventilation (10.93 +/- 1.16 vs. 9.11 +/- 1.17 l/min, P < 0.001). In condition 1, the onset of passive movement produced a fast increase in mean +/- SE breathing frequency (change of 2.9 +/- 0.4 breaths/min, P < 0.001), tidal volume (change of 233 +/- 95 ml, P < 0.001), and ventilation (change of 6.00 +/- 1.76 l/min, P < 0.001). However, in condition 2, the onset of passive movement only produced a fast increase in mean +/- SE breathing frequency (change of 1.3 +/- 0.4 breaths/min, P = 0.045), significantly smaller than in condition 1 (P = 0.007). These findings provide evidence for an interaction between central neural cognitive activity and the afferent feedback mechanism, and we conclude that the performance of a cognitive task suppresses the respiratory response to passive movement.  相似文献   

6.
The purpose of this study was to determine the effects of the semicircular canals and otolith organs on respiration in humans. On the basis of animal studies, we hypothesized that vestibular activation would elicit a vestibulorespiratory reflex. To test this hypothesis, respiratory measures, arterial blood pressure, and heart rate were measured during engagement of semicircular canals and/or otolith organs. Dynamic upright pitch and roll (15 cycles/min), which activate the otolith organs and semicircular canals, increased respiratory rate (Delta2 +/- 1 and Delta3 +/- 1 breaths/min, respectively; P < 0.05). Dynamic yaw and lateral pitch (15 cycles/min), which activate the semicircular canals, increased respiration similarly (Delta3 +/- 1 and Delta2 +/- 1, respectively; P < 0.05). Dynamic chair rotation (15 cycles/min), which mimics dynamic yaw but eliminates neck muscle afferent, increased respiration (Delta3 +/- 1; P < 0.05) comparable to dynamic yaw (15 cycles/min). Increases in respiratory rate were graded as greater responses occurred during upright (Delta5 +/- 2 breaths/min) and lateral pitch (Delta4 +/- 1) and roll (Delta5 +/- 1) performed at 30 cycles/min. Increases in breathing frequency resulted in increases in minute ventilation during most interventions. Static head-down rotation, which activates otolith organs, did not alter respiratory rate (Delta1 +/- 1 breaths/min). Collectively, these data indicate that semicircular canals, but not otolith organs or neck muscle afferents, mediate increased ventilation in humans and support the concept that vestibular activation alters respiration in humans.  相似文献   

7.
Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increase in respiration frequency. During normoxia, respiration occurred in bouts of four to five breaths, whereas at 5% O(2), the ventilation pattern was more regular with breathing bouts consisting of a single breath. The increase in the heart rate between breaths during hypoxia suggests that a high pulmonary blood flow may be maintained during non-ventilatory periods to improve arterial blood oxygenation. After 4 days of hypoxia at 5% O(2), hematocrit, hemoglobin concentration and multiplicity and intraerythrocytic organic phosphate concentration remained unaltered. Accordingly, oxygen binding curves at constant P(CO(2)) showed no changes in oxygen affinity and cooperativity. However, blood pH increased significantly from 7.50+/-0.05 under normoxia to 7.72+/-0.03 under hypoxia. The respiratory alkalosis will produce a pronounced in vivo left-shift of the blood oxygen dissociation curve due to the large Bohr effect and this is shown to be critical for arterial oxygen saturation.  相似文献   

8.
Ventilatory responses to progressive exercise, with and without an inspiratory elastic load (14.0 cmH2O/l), were measured in eight healthy subjects. Mean values for unloaded ventilatory responses were 24.41 +/- 1.35 (SE) l/l CO2 and 22.17 +/- 1.07 l/l O2 and for loaded responses were 24.15 +/- 1.93 l/l CO2 and 20.41 +/- 1.66 l/l O2 (P greater than 0.10, loaded vs. unloaded). At levels of exercise up to 80% of maximum O2 consumption (VO2max), minute ventilation (VE) during inspiratory elastic loading was associated with smaller tidal volume (mean change = 0.74 +/- 0.06 ml; P less than 0.05) and higher breathing frequency (mean increase = 10.2 +/- 0.98 breaths/min; P less than 0.05). At levels of exercise greater than 80% of VO2max and at exhaustion, VE was decreased significantly by the elastic load (P less than 0.05). Increases in respiratory rate at these levels of exercise were inadequate to maintain VE at control levels. The reduction in VE at exhaustion was accompanied by significant decreases in O2 consumption and CO2 production. The changes in ventilatory pattern during extrinsic elastic loading support the notion that, in patients with fibrotic lung disease, mechanical factors may play a role in determining ventilatory pattern.  相似文献   

9.
Inspiratory muscle forces and endurance in maximum resistive loading   总被引:1,自引:0,他引:1  
The ability of the respiratory muscles to sustain ventilation against increasing inspiratory resistive loads was measured in 10 normal subjects. All subjects reached a maximum rating of perceived respiratory effort and at maximum resistance showed signs of respiratory failure (CO2 retention, O2 desaturation, and rib cage and abdominal paradox). The maximum resistance achieved varied widely (range 73-660 cmH2O X l-1 X s). The increase in O2 uptake (delta Vo2) associated with loading was linearly related to the integrated mouth pressure (IMP): delta Vo2 = 0.028 X IMP + 19 ml/min (r = 0.88, P less than 0.001). Maximum delta Vo2 was 142 ml/min +/- SD 68 ml/min. There were significant (P less than 0.05) relationships between the maximum voluntary inspiratory pressure against an occluded airway (MIP) and both maximum IMP (r = 0.80) and maximum delta Vo2 (r = 0.76). In five subjects, three imposed breathing patterns were used to examine the effect of different patterns of respiratory muscle force deployment. Increasing inspiratory duration (TI) from 1.5 to 3.0 and 6.0 s, at the same frequency of breathing (5.5 breaths/min) reduced peak inspiratory pressure and increased the maximum resistance tolerated (190, 269, and 366 cmH2O X l-1 X s, respectively) and maximum IMP (2043, 2473, and 2913 cmH2O X s X min-1, but the effect on maximum delta Vo2 was less consistent (166, 237, and 180 ml/min). The ventilatory endurance capacity and the maximum O2 uptake of the respiratory muscles are related to the strength of the inspiratory muscles, but are also modified through the pattern of force deployment.  相似文献   

10.
In this study, we examined the cardiorespiratory patterns of harbour seal pups under normoxic/normocarbic (air), hypoxic/normocarbic (15%, 12%, and 9% O2 in air), and normoxic/hypercarbic (2%, 4%, and 6% CO2 in air) conditions while awake and sleeping on land. Animals were chronically instrumented to record electroencephalogram (EEG), electromyogram (EMG), and electrocardiogram (EKG) signals, which, along with respiration (whole-body plethysmography) and oxygen consumption (VO2), were recorded from animals breathing each gas mixture for 2-4 h on separate days. Our results show that for animals breathing air, VO2 was not significantly lower during slow-wave sleep (SWS; 7.71 +/- 0.39 mL O2 min(-1) kg(-1); all measurements are mean +/- SEM) than during wakefulness (WAKE; 8.80 +/- 0.25 mL O2 min(-1) kg(-1)) and was unaffected by changes in respiratory drive. Although there was no significant fall in VO2 associated with a decrease in arousal state, breathing frequency (f(R)) did decrease (from 18.80 +/- 1.50 breaths min(-1) in WAKE to 10.40 +/- 0.49 breaths min(-1) in SWS), while the incidence of long apneas (>20 s) increased (12.76 +/- 4.06 apneas h(-1) in WAKE and 31.95 +/- 2.37 apneas h(-1) in SWS). Breathing was rarely seen during rapid eye movement (REM) sleep. Tachypnea was present at all levels of increased respiratory drive; however, hypoxia induced a dramatic bradycardia regardless of arousal state, while hypercarbia produced a tachycardia in SWS only. The hypoxic and hypercarbic chemosensitivities of harbour seal pups were similar to those of terrestrial mammals; however, unlike terrestrial mammals, where hypoxic and hypercarbic sensitivities are often reduced during SWS, the sensitivity of harbour seal pups to hypoxia and hypercarbia remained unchanged during the decrease in arousal state from WAKE to SWS.  相似文献   

11.
To examine the role of the laryngeal reflex in modulating cardiorespiratory function, we stimulated the superior laryngeal nerves (SLN) bilaterally in unanesthetized, chronically instrumented piglets (n = 10, age 5-14 days). The SLN were placed in cuff electrodes and wires were exteriorized in the neck for stimulation. A cannula placed in the aorta was used for blood pressure recording and arterial blood sampling. During each experiment, 1-2 days after surgery, ventilation was recorded using whole-body plethysmography, and electroencephalogram and electrocardiogram were recorded after acute subcutaneous electrode placement. After base-line recordings, the SLN were electrically stimulated for 1 h. During this period, mean respiratory frequency decreased by 40-75% and apneas of 10-15 s were regularly interspersed between single breaths or clusters of breaths. Periods of breathing were always associated with opening of the eyes and generally with head and body movements, an awakening that occurred every 10-15 s. At 1 h into the stimulus period, minute ventilation had decreased by 57 +/- 7% (mean +/- SE), arterial partial pressure of O2 (PaO2) by 68 +/- 3 Torr, and arterial partial pressure of CO2 (PaCO2) had increased by 19 +/- 2 Torr. Throughout the entire stimulus period, mean blood pressure and average heart rate were maintained within 12% of base line. We suggest that: low-threshold SLN afferents exert primarily respiratory effects and only minor cardiovascular effects; breathing during laryngeal reflex activation is sustained by an arousal system; and the laryngeal reflex does not pose an imminent threat to the unanesthetized, awake, young animal.  相似文献   

12.
Influence of lung volume on oxygen cost of resistive breathing   总被引:2,自引:0,他引:2  
We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.  相似文献   

13.
Traditionally, the increase in ventilation occurring after approximately 4 s of CO2 inhalation in preterm infants has been attributed to an action at the peripheral chemoreceptors. However, on a few occasions, we have observed a short apnea (2-3 s) in response to 3-5% CO2 in these infants. To test the hypothesis that this apnea reflects a respiratory sensory reflex to CO2, we gave nine preterm infants [birth wt 1.5 +/- 0.1 (SE) kg, gestational age 31 +/- 1 wk] 7-8% CO2 while they breathed 21% O2. To study the dose-response relationship, we also gave 2, 4, 6, and 8% CO2 to another group of seven preterm infants (birth wt 1.5 +/- 0.1 kg, gestational age 31 +/- 1 wk). In the first group of infants, minute ventilation during 21% O2 breathing (0.232 +/- 0.022 l.min-1.kg-1) decreased after CO2 administration (0.140 +/- 0.022, P < 0.01) and increased with CO2 removal (0.380 +/- 0.054, P < 0.05). This decrease in ventilation was related to an apnea (12 +/- 2.6 s) occurring 7.7 +/- 0.8 s after the beginning of CO2 inhalation. There was no significant change in tidal volume. In the second group of infants, minute ventilation increased during administration of 2, 4, and 6% CO2 but decreased during 8% CO2 because of the presence of an apnea. These findings suggest that inhalation of a high concentration of CO2 (> 6%) inhibits breathing through a respiratory sensory reflex, as described in adult cats (H. A. Boushey and P. S. Richardson. J. Physiol. Lond. 228: 181-191, 1973).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Pressure support (PS) is characterized by a pressure plateau, which is usually generated at the ventilator level (PS(vent)). We have built a PS device in which the pressure plateau can be obtained at the upper airway level (PS(aw)) or at the alveolar level (PS(A)). The effect of these different PS modes was evaluated in seven healthy men during air breathing and 5% CO(2) breathing. Minute ventilation during air breathing was higher with PS(A) than with PS(aw) and lower with PS(vent) (16 +/- 3, 14 +/- 3, and 11 +/- 2 l/min, respectively). By contrast, there were no significant differences in minute ventilation during 5% CO(2) breathing (25 +/- 5, 27 +/- 7, and 23 +/- 5 l/min, respectively). The esophageal pressure-time product per minute was lower with PS(A) than with PS(aw) and PS(vent) during air breathing (29 +/- 26, 44 +/- 44, and 48 +/- 30 cmH(2)O. s, respectively) and 5% CO(2) breathing (97 +/- 40, 145 +/- 62, and 220 +/- 41 cmH(2)O. s, respectively). In conclusion, during PS, moving the inspiratory pressure plateau from the ventilator to the alveolar level reduces pressure output, particularly at high ventilation levels.  相似文献   

15.
The effect of phasic eye movement activity on ventilation during rapid-eye-movement (REM) sleep was studied in seven healthy young adults by use of the respiratory inductive plethysmograph. Mean ventilation (VE) and ventilatory components during REM sleep were not significantly different from that seen in either stages 1-2 or 3-4 sleep. The percent of rib cage contribution to ventilation in REM sleep, 29.3 +/- 5.1%, was reduced compared with 54.4 +/- 5.8% in stage 1-2 and 52.2 +/- 4.3% in stage 3-4 sleep (P less than 0.005). When one separated breaths by the degree of associated phasic eye movement activity, it became apparent that breathing during REM sleep is very heterogeneous. Increasing eye movement activity was associated with inhibition of ventilation with a reduction in VE from 5.1 +/- 0.3 to 3.8 +/- 0.3 l/min. Tidal volume and frequency both fell, whereas inspiratory duration was unchanged. Compartmental ventilation was also affected, with the fall in the rib cage contribution from 37.8 +/- 6.4 to 15.3 +/- 5.6%. Chest wall and abdominal movement became more asynchronous as phasic-eye-movement activity increased and frank paradoxical breathing was seen.  相似文献   

16.
We examined the effects of hyperpnea duration and abrupt changes in inspired gas heat and water content on the magnitude and time course of hyperpnea-induced bronchoconstriction (HIB) in anesthetized mechanically ventilated male Hartley guinea pigs. In 12 animals subjected to 5, 10, and 15 min (random order) of dry gas isocapnic hyperpnea [tidal volume (VT) 4-6 ml, 150 breaths/min) followed by quiet breathing of humidified air (VT 2-3 ml, 60 breaths/min), severe bronchoconstriction developed only after the cessation of hyperpnea; the magnitude of respiratory system resistance (Rrs) increased with the duration of dry gas hyperpnea [peak Rrs 1.0 +/- 0.2, 1.8 +/- 0.3, and 2.3 +/- 0.3 (SE) cmH2O.ml-1.s, respectively]. Seven other guinea pigs received, in random order, 10 min of warm humidified gas hyperpnea, 10 min of room temperature dry gas hyperpnea, and 5 min of dry gas hyperpnea immediately followed by 5 min of warm humidified gas hyperpnea. After each hyperpnea period, the animal was returned to quiet breathing of humidified gas. Rrs rose appreciably after the 10 min of dry and 5 min of dry-5 min of humidified hyperpnea challenges (peak Rrs 1.3 +/- 0.2 and 0.7 +/- 0.2 cmH2O.ml-1.s, respectively) but not after 10 min of humidified hyperpnea (0.2 +/- 0.04 cmH2O.ml-1.s). An additional five animals received 10 min of room temperature dry gas hyperpnea followed by quiet breathing of warm humidified air and 10 min of room temperature dry gas hyperpnea followed by 30 min of warm humidified gas hyperpnea in random order.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Cyclic ventilatory instabilities are widely attributed to an increase in the sensitivity or loop gain of the chemoreflex feedback loop controlling ventilation. A major limitation in the conventional characterization of this feedback loop is the need for labor-intensive methodologies. To overcome this limitation, we developed a method based on trivariate autoregressive modeling using ventilation, end-tidal Pco(2) and Po(2); this method provides for estimation of the overall "loop gain" of the respiratory control system and its components, chemoreflex gain and plant gain. Our method was applied to recordings of spontaneous breathing in 15 anesthetized, tracheostomized, newborn lambs before and after administration of domperidone (a dopamine D(2)-receptor antagonist that increases carotid body sensitivity). We quantified the known increase in hypoxic ventilatory sensitivity in response to domperidone; controller gain for O(2) increased from 0.06 (0.03, 0.09) l·min(-1)·mmHg(-1) to 0.09 (0.08, 0.13) l·min(-1)·mmHg(-1); median (interquartile-range). We also report that domperidone increased the loop gain of the control system more than twofold [0.14 (0.12, 0.22) to 0.40 (0.15, 0.57)]. We observed no significant changes in CO(2) controller gain, or plant gains for O(2) and CO(2). Furthermore, our estimate of the cycle duration of periodic breathing compared favorably with that observed experimentally [measured: 7.5 (7.2, 9.1) vs. predicted: 7.9 (7.0, 9.2) breaths]. Our results demonstrate that model-based analysis of spontaneous breathing can 1) characterize the dynamics of the respiratory control system, and 2) provide a simple tool for elucidating an individual's propensity for ventilatory instability, in turn allowing potential therapies to be directed at the underlying mechanisms.  相似文献   

18.
We determined whether the [CO2] in the upper airways (UA) can influence breathing in ponies and whether UA [CO2] contributes to the attenuation of a thermal tachypnea during periods of elevated inspired CO2. Six ponies were studied 1 mo after chronic tracheostomies were created. For one protocol the ponies were breathing room air through a cuffed endotracheal tube. Another smaller tube was placed in the tracheostomy and directed up the airway. By use of this tube, a pump, and prepared gas mixtures, UA [CO2] was altered without affecting alveolar or arterial PCO2. When the ponies were at a neutral environmental temperature (TA) and breathing frequency (f) was 8 breaths X min-1, increasing UA [CO2] up to 18-20% had no effect on f. However, when TA was increased 20 degrees C to increase f to 50 breaths X min-1, then increasing UA [CO2] to 6% or to 18-20% reduced f by 5 +/- 1.7 (SE) and 12 +/- 1.6 breaths X min-1, respectively (t = 3.3, P less than 0.01). These data suggest that in the pony there exists a UA CO2-H+ sensory mechanism. For a second protocol the ponies were breathing a 6% CO2 gas mixture for 15 min in the normal fashion over the entire airway (nares breathing, NBr) or they were breathing this gas mixture for 15 min through the cuffed endotracheal tube (TBr). At a neutral TA, increasing inspired [CO2] to 6% resulted in a 6-breaths X min-1 increase in f during both NBr and TBr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The purpose of this study was to determine if the increase in ventilation induced by hypoxic stimulation of the carotid bodies (CB) persists after cessation of the stimulus in humans. I reasoned that a short-term potentiation (STP) of breathing, sometimes called an "afterdischarge," could be unmasked by combining hypoxia with exercise, because ventilation increases synergistically under these conditions. Seven young healthy men performed mild bicycle exercise (30% peak power) while breathing O2 for 1.5 min ("control" state), and their CB were then stimulated by 1.5 min of hypoxic exercise (10% O2--balance N2). CB stimulation was then terminated by changing the inspirate back to O2 as exercise continued. Inspiratory and expiratory duration (TI and TE) and inspiratory flow and its time integral [tidal volume (VT)] were measured with a pneumotachometer. Inspired minute ventilation (VI) and mean inspiratory flow (VT/TI) declined exponentially after the cessation of CB stimulation, with first-order time constants of 28.6 +/- 6.7 and 24.6 +/- 1.6 (SD) s, respectively. The slow decay of VI was due primarily to potentiation of both TI and TE, although the effect on the latter predominated. Additional experiments in six subjects showed that brief intense CB stimulation with four to five breaths of N2 during mild exercise induced STP of similar magnitude to that observed in the hypoxic exercise experiments. Finally, the imposition of hyperoxia during air breathing exercise at a level of respiratory drive similar to that induced by the hypoxic exercise did not change VI significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号