首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Semitendinosus (ST) muscle samples were excised from 8 intact and 8 castrate male animals (Bos taurus) when they reached age end-points of 8, 12, 16, and 20 months. All three principal myofiber phenotypes (IC, IIA, IIB) increased in size with increasing age, with the IIA (fast-white) fibers usually larger than the other two types. Only at 16 and 20 months were the type II myofibers from intact males consistently larger than that from castrates. The amount of IIA fibers always exceeded that of the other two phenotypes at every age. Myofiber characteristics were more highly correlated with animal age than with either total body weight or total muscle mass. An ontogenetic scheme is proposed to illustrate the dynamic interrelationships of the three ST myofiber phenotypes.  相似文献   

2.
Rowlerson  A. M.  Silva  P.  Rocha  E.  Olmedo  M.  & Valente  L. M. P. 《Journal of fish biology》2004,65(S1):334-334
We studied muscle ontogeny and fibre type characteristics in the blackspot seabream, a new species for commercial aquaculture. Myosin ATPase and SDH histochemistry and immunohistochemistry were tested at different ontogenetic stages, using a panel of antibodies to myosin isoforms and parvalbumin. In general, deep white muscle was parvalbumin‐positive, and superficial 'red' muscle was parvalbumin‐negative at all ages examined. At 6 days of age (transition from endogenous to exogenous feeding) three layers of muscle fibres were observed with different antimyosin reactivities: superficial monolayer, presumptive slow red (present only as a small group of fibres adjacent to the lateral line nerve), and presumptive fast‐white (forming the bulk of the muscle). The superficial monolayer and presumptive slow fibres were positive for SDH. At 60 days of age (transition from live to artificial feeding) an additional fibre type was identified: a typical 'pink' or intermediate layer. In juveniles, the axial muscle consisted mainly of fast white fibres covered by a slow‐red layer and between them a pink layer. Surprisingly, the red layer could be resolved into two distinct types by myosin immunostaining. Red fibres were also present along the horizontal septum, near the notochord. Both red and white muscle layers showed a mosaic appearance, which was confirmed by ATPase reaction. The work was financed by British Council, CRUP, and FCT (PhD Grant SFRH‐BD‐14068–2003).  相似文献   

3.
Summary The histochemical activities of succinic dehydrogenase (SDH), creatine kinase (CK), sarcoplasmic reticular ATPase (SR-ATPase) and myosin ATPase were studied in serial sections of rabbit adductor muscle. Three fibre types were distinguished depending upon the distribution of the enzyme activities. The type II white fibres posessing minimal SDH showed high myosin ATPase, SR-ATPase and ATPase dependent CK activities. Red oxidative fibres showing high SDH fell into two distinct groups: One category had mainly a peripheral localization of SDH and showed an enzymatic profile identical to that of type II white fibres. The second category of red fibres displayed both a homogeneous distribution of small diformazan granules throughout the fibre as well as a sub-sarcolemmal collection when tested for SDH activity but possessed very low amounts of reaction product of the various enzymes of the energetic metabolism studied. Since it is well established that the myosin ATPase of a fibre correlates with its contraction time, the present histochemical investigation provides further support for this concept by demonstrating the presence of high SR-ATPase and ATPase dependent CK activities in all white and red fibres rich in myosin ATPase.  相似文献   

4.
Ca2+-ATPase of the sarcoplasmic reticulum was localized in cryostat sections from three different adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with monoclonal antibodies to the Ca2+-ATPase. Type I (slow) myofibers were strongly labeled for the Ca2+-ATPase with a monoclonal antibody (II D8) to the Ca2+-ATPase of canine cardiac sarcoplasmic reticulum; the type II (fast) myofibers were labeled at the level of the background with monoclonal antibody II D8. By contrast, type II (fast) myofibers were strongly labeled for Ca2+-ATPase of rabbit skeletal sarcoplasmic reticulum. The subcellular distribution of the immunolabeling in type I (slow) myofibers with monoclonal antibody II D8 corresponded to that of the sarcoplasmic reticulum as previously determined by electron microscopy. The structural similarity between the canine cardiac Ca2+-ATPase present in the sarcoplasmic reticulum of the canine slow skeletal muscle fibers was demonstrated by immunoblotting. Monoclonal antibody (II D8) to the cardiac Ca2+-ATPase binds to only one protein band present in the extract from either cardiac or type I (slow) skeletal muscle tissue. By contrast, monoclonal antibody (II H11) to the skeletal type II (fast) Ca2+-ATPase binds only one protein band in the extract from type II (fast) skeletal muscle tissue. These immunopositive proteins coelectrophoresed with the Ca2+-ATPase of the canine cardiac sarcoplasmic reticulum and showed an apparent Mr of 115,000. It is concluded that the Ca2+-ATPase of cardiac and type I (slow) skeletal sarcoplasmic reticulum have at least one epitope in common, which is not present on the Ca2+-ATPase of sarcoplasmic reticulum in type II (fast) skeletal myofibers. It is possible that this site is related to the assumed necessity of the Ca2+-ATPase of the sarcoplasmic reticulum in cardiac and type I (slow) skeletal myofibers to interact with phosphorylated phospholamban and thereby enhance the accumulation of Ca2+ in the lumen of the sarcoplasmic reticulum following beta-adrenergic stimulation.  相似文献   

5.
Phospholamban, originally described as a cardiac sarcoplasmic reticulum protein, was localized in cryostat sections of three adult canine skeletal muscles (gracilis, extensor carpi radialis, and superficial digitalis flexor) by immunofluorescence labeling with highly specific phospholamban antibodies. Only some myofibers were strongly labeled with phospholamban antibodies. The labeling of myofibers with phospholamban antibodies was compared to the distribution of Type I (slow) and Type II (fast) myofibers as determined by staining adjacent sections cytochemically for the alkali-stable myosin ATPase, a specific marker for Type II myofibers. All the skeletal myofibers labeled for phospholamban above background levels corresponded to Type I (slow) myofibers. The presence of phospholamban in microsomal fractions isolated from canine superficial digitalis flexor (89 +/- 3% Type I) and extensor carpi radialis skeletal muscle (14 +/- 6% Type I) was confirmed by immunoblotting. Antiserum to cardiac phospholamban bound to proteins of apparent Mr values of 25,000 (oligomeric phospholamban) and 5,000-6,000 (monomeric phospholamban) in sarcoplasmic reticulum vesicles from both muscles. Quantification of phospholamban in sarcoplasmic reticulum vesicles from cardic, slow, and fast skeletal muscle tissues following phosphorylation with [gamma-32P] ATP suggested that superficial digitalis flexor and extensor carpi radialis skeletal muscle contained about 16 and 3%, respectively, as much phospholamban as cardiac muscle per unit of sarcoplasmic reticulum. The presence of phospholamban in both Type I (slow) and cardiac muscle fibers supports the possibility that the Ca2+ fluxes across the sarcoplasmic reticulum in both fiber types are similarly regulated, and is consistent with the idea that the relaxant effect of catecholamines on slow skeletal muscle is mediated in part by phosphorylation of phospholamban.  相似文献   

6.
Oxidative capacity and capillary density of diaphragm motor units   总被引:2,自引:0,他引:2  
Motor units in the cat diaphragm (DIA) were isolated in situ by microdissection and stimulation of C5 ventral root filaments. Motor units were classified based on their isometric contractile force responses and fatigue indexes (FI). The muscle fibers belonging to individual units (i.e., the muscle unit) were identified using the glycogen-depletion method. Fibers were classified as type I or II based on histochemical staining for myofibrillar adenosine triphosphatase (ATPase) after alkaline preincubation. The rate of succinate dehydrogenase (SDH) activity of each fiber was determined using a microphotometric procedure. The location of capillaries was determined from muscle cross sections stained for ATPase after acid (pH = 4.2) preincubation. The capillarity of muscle unit fibers was determined by counting the number of capillaries surrounding fibers and by calculating the number of capillaries per fiber area. A significant correlation was found between the fatigue resistance of DIA units and the mean SDH activity of muscle unit fibers. A significant correlation was also observed between DIA unit fatigue resistance and both indexes of muscle unit fiber capillarity. The mean SDH activity and mean capillary density of muscle unit fibers were also correlated. We conclude that DIA motor unit fatigue resistance depends, at least in part, on the oxidative capacity and capillary density of muscle unit fibers.  相似文献   

7.
8.
Summary The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar.Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

9.
The histochemical pattern of muscle fiber types of the longissimus dorsi and biceps femoris muscles was investigated in normal and splaylegged piglets at birth and seven days later. Only slight differences between the muscle fibers at birth were found using histochemical reactions for alkaline adenosine triphosphatase (ATPase), succinate dehydrogenase (SDH), phosphorylase (PH) activities, and for the periodic acid-Schiff (PAS) reaction. With the method for acid-preincubated ATPase activity, high activity was observed in Type I muscle fibers and low activity in Type II muscle fibers in animals of both groups investigated. However, a higher number of Type I fibers was found in muscles of normal piglets, suggesting a faster and more advanced process of transformation of Type II into Type I muscle fibers in unaffected animals. Thus the histochemical conversion appears to be retarded in muscles of splaylegged animals, which have a histochemical pattern similar to that of normal prenatal animals. Cholinesterase activity in motor endplates was well developed; its staining revealed smaller sized and irregularly arranged endplates in muscles of affected piglets. Fiber type differentiation in muscles of animals which recovered from splayleg becomes fully developed and comparable to normal piglets seven days after birth. The number of fibers which became converted from Type II to Type I was increased; the fiber types were differentiated with regard to the PAS reaction and to their ATPase, SDH and PH activities. Morphological features of motor endplates in muscles of normal and surviving splaylegged piglets are similar. Histochemical investigation of the fiber type differentiation thus suggests that full recovery occurs within the first week of postnatal life in muscles affected by pathological changes accompanying splayleg.  相似文献   

10.
Both red and white muscle were removed from juvenile and adult Atlantic mackerel, Scomber scombrus L., for histochemical characterization of the muscle fibre types. Staining of white muscle for myosin ATPase, SDH, NADH diaphorase, GPDH and LDH revealed that these fibres are homogeneous. Red muscle was shown to be heterogeneous, of at least two fibre types recognizable on the basis of myosin ATPase staining with preincubation at a pH of 9·8. These two red types are dispersed throughout the red muscle and are present in both juveniles and adults. Red muscle is located both deep within the myotomes and as a superficial layer of muscle fibres. A third group of muscle fibres, intermediate in nature, was distinguished at the apex of the red muscle 'triangle,' between the epaxial and hypaxial muscle, using NADH diaphorase and myosin ATPase stains. This paper discusses the possibility that functionally different muscle fibres occur in the red swimming muscle of the Atlantic mackerel.  相似文献   

11.
The histochemical pattern of red, pink and white muscle of fish living in fresh, brackish, and salt water is reported. The muscle fibres were stained routinely during the year for lactate dehydrogenase (LDH), menadione α-glycerophosphate dehydrogenase (Mα—GPDH), succinic dehydrogenase (SDH), myosin adenosine triphosphatase (myosin ATPase), phosphorylase, lipids and glycogen. The pink and red muscles contain more glycogen and lipids and have a higher SDH activity, which is in accord with their aerobic metabolism and function in sustained swimming activity. The acid labile myosin ATPase activity characteristic of fast twitch fibres is present in the white fibres of most species, however in the white muscle of Gobius paganellus the enzyme activity is stable to both acid and alkali and, in addition, there is a scattered distribution of different fibre types in red and, especially, pink muscle. A study of seasonal variation patterns of myosin ATPase in white muscle of mugilidae over a period of two years has demonstrated, in late summer, the appearance of new small diameter fibres, with a high acid stable enzyme activity, that develop into the large diameter acid labile fibres.  相似文献   

12.
A histochemical study of the myotomal muscles in the roach revealed three main muscle regions: red, intermediate and white. These were distinguished on the basis of glycogen content, succinate dehydrogenase (SDH), and myofibrillar ATPase (mATPase) activity. Except for the red fibre region, none of these described regions is homogeneous. The principal new findings are the toniclike fibre, the presence of a transitional zone with two fibre types, and the mosaic organization of the white fibre region. The significance of this type of myotome architecture in relation to the locomotion of the species is discussed.  相似文献   

13.
Diaphragm capillarity and oxidative capacity during postnatal development.   总被引:1,自引:0,他引:1  
In the cat diaphragm, fiber capillarity, cross-sectional area, and succinate dehydrogenase (SDH) activity were measured across the first 6 wk of postnatal development. Fibers were classified as type I, IIa, IIb, or IIc on the basis of staining for myofibrillar adenosinetriphosphatase (ATPase). Capillaries were identified in sections stained for ATPase at pH 4.2. Fiber cross-sectional areas and SDH activities were quantified using an image-processing system. During postnatal development, the proportions of type I fibers increased while type II fibers decreased. At birth, all type II fibers were IIc. From the 1st to the 2nd postnatal wk, the proportion of type IIc fibers decreased while the numbers of IIa and IIb increased. Thereafter the proportion of type IIb fibers continued to increase while the number of IIa steadily declined. At birth, capillarity, cross-sectional areas, and SDH activities of type I and II fibers were low compared with other postnatal age groups. Fiber cross-sectional areas increased progressively with age. The number of capillaries surrounding type I and II fibers increased markedly by the 2nd wk and then continued to increase at a slower rate. The number of capillaries per fiber area reached a peak by the 2nd wk and then declined as fiber cross-sectional area increased. Postnatal changes in capillarity depended on fiber type, being greatest in IIb. SDH activities of type I and II fibers were initially low during the first 2 postnatal wk and then peaked by the 3rd wk. After the 6th wk, fiber SDH activities decreased to adult values. Among the type II fibers, IIb showed the greatest change in SDH activity during early postnatal development.  相似文献   

14.
In fry, 1- and 2-year old juvenile Atlantic salmon, relatively small superficial red muscle fibres staining well for glycogen and succinic dehydrogenase (SDH) but with little myofibrillar ATPase, were evident on either side of the lateral line, in June. Well differentiated relatively large white fibres contained lower concentrations of glycogen than the red fibres, higher ATPase and no SDH, except traces in the larger 1- and 2-year-olds. Intermediate size pink fibres, which were also intermediate between red and white fibres in their staining properties, occurred in a thin diffuse layer along the red-white boundary, thickest at the apex near the vertebral column, and most evident in the younger fish.  相似文献   

15.
Longo, M.V. and Díaz, A.O. (2011). The claw closer muscle of two estuarine crab species, Cyrtograpsus angulatus and Neohelice granulata (Grapsoidea, Varunidae): histochemical fibre type composition. —Acta Zoologica (Stockholm) 00 : 1–7. This study permitted the characterization of four types of muscle fibres in the claw closer muscles of Cyrtograpsus angulatus and Neohelice granulata. Succinic dehydrogenase (SDH) for mitochondria, periodic acid Schiff (PAS) for glycogen, Sudan Black B for lipids and myosin‐adenosine triphosphatase (m‐ATPase) preincubated at alkaline and acid pHs were used for that purpose. The mean fibre diameters, the relative areas and frequencies of each muscle fibre type were calculated. Types I and IV would be considered ‘extreme’ groups with type I fibres large, weak and acid/alkaline‐labile m‐ATPase, weak SDH, PAS and Sudan, and type IV fibres small, very strong and acid/alkaline‐resistant m‐ATPase, strong SDH and PAS, and moderate Sudan. Types II and III would belong to a predominant ‘intermediate’ group. Type IV fibres were scarce in C. angulatus but represented 25% of the total fibre population in N. granulata. In C. angulatus, the relative area occupied by type I fibres was bigger than its relative proportion, whereas in N. granulata, types I and II had similar patterns. Concluding, variations in fibre type composition in the claw closer muscles of C. angulatus and N. granulata would be linked to different habitats and feeding behaviours.  相似文献   

16.
To assess the effect of severe chronic obstructive pulmonary disease (COPD) on the ability of human diaphragmatic myofibers to aerobically generate ATP relative to ATP utilization, we obtained biopsy specimens of the costal diaphragm from seven patients with severe COPD (mean +/- SE; age 56 +/- 1 yr; forced expiratory volume in 1 s 23 +/- 2% predicted; residual volume 267 +/- 30% predicted) and seven age-matched control subjects. We categorized all fibers in these biopsies by using standard techniques, and we carried out the following quantitative histochemical measurements by microdensitometry: 1) succinate dehydrogenase (SDH) activity as an indicator of mitochondrial oxidative capacity and 2) calcium-activated myosin ATPase (mATPase) activity, the ATPase that represents a major portion of ATP consumption by contracting muscle. We noted the following: 1) COPD diaphragms had a larger proportion of type I fibers, a lesser proportion of type IIax fibers, and the same proportion of type IIa fibers as controls. 2) SDH activities of each of the fiber types were higher in COPD than control diaphragms (P < 0.0001); the mean increases (expressed as percent of control values) in types I, IIa, and IIax were 84, 114, and 130%, respectively. 3) COPD elicited no change in mATPase activity of type I and IIa fibers, but mATPase decreased in type IIax fibers (P = 0.02). 4) Mitochondrial oxidative capacity relative to ATP demand (i.e., SDH/mATPase) was higher (P = 0.03) in each of the fiber types in COPD diaphragms than in controls. These results demonstrate that severe COPD elicits an increase in aerobic ATP generating capacity relative to ATP utilization in all diaphragmatic fiber types as well as the previously described fast-to-slow fiber type transformation (Levine S, Kaiser L, Leferovich J, and Tikunov B, N Engl J Med 337: 1799-1806, 1997).  相似文献   

17.
Summary Some histochemical parameters of the three main fibre types of rat vastus lateralis muscle were studied. Succinic dehydrogenase (SDH), creatine kinase (CK), sarcotubular ATPase (SR-ATPase) and mitochondrial ATPase activities were demonstrated in serial sections. The three fibre types, recognised by the distribution pattern of SDH activity, all show high CK activity. However, red Type I oxidative fibres when examined for ATPase and ATPase dependent CK activity, show distinct heterogeneity revealing sub-populations within the same homogeneous fibre type. Three distinct patterns were recognised in the red Type I fibres depending on the distribution of the final reaction product. The present histochemical evidence confirms the fact that subdivision of mammalian skeletal muscle into three fibre types is only approximate and probably more than three types exist.  相似文献   

18.
The present study examines the use of photographic densitometry combined with atomic absorption spectrophotometry for the quantitation of enzyme activities (SDH and ATPase) in fresh frozen sections of rat tibialis anterior muscles. The technique eliminates some difficulties which are inherent in other methods. The reliability of the technique was found to be in the 98% range; the results were precise for all samples studied. The use of SDH to separate muscle fibers into "types" was found to be totally inaccurate since a full spectrum of activities was observed. ATPase activities could separate easily into two groups, but a continuum of ATPase activities was observed in the fast-twitch fibers. The simultaneous use of both enzymes was capable of separating the FG, FOG and SO fibers; however, variation within a single type was considerable and a great deal of information was lost when using any classification system. The continuum of SDH activities indicates the motor units are arranged as a spectrum of fatigue-resistant contractile units. The range of ATPase activities observed is comparable to ranges of motor unit contraction times emphasizing the importance of this enzyme in the regulation of contraction speed.  相似文献   

19.
20.
In the normal and randomly reinnervated plantaris muscle of rat staining for succinic dehydrogenase (SDH) activity differentiates three fiber types (A, B and C), staining for myofibrillar adenosine triphosphatase (ATPase) differentiates three fiber types (alpha, beta and alpha beta). Here we present our finding type A corresponds to alpha beta fibers, B to beta or alpha beta, C to alpha or alpha beta. In normal soleus muscle both classifications were found to be compatible and B fibers correspond to beta and C to alpha fibers. An exception is the small percent of alpha beta fibers which correspond to B type. In randomly reinnervated soleus muscle changes in ATPase activity are not followed by changes in SDH staining and B fibers correspond to alpha, beta or alpha beta types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号