首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A kinetic study has been made of the release ofd-aspartate from rat cortical synaptosomes following pre-loading with labelled D-aspartate, and the results compared to a previous study of the release of the acidic amino acids glutamate plus aspartate following pre-loading with labeledl-glutamate. Qualitatively, the results of the two studies are similar. The D-aspartate taken up during the preload period appears to be totally releasable. However, release is greatly increased by depolarizing media. The increased rate of release induced by increasing [K]o is independent of the [Ca]o, while veratrine-induced release is inhibited by [Ca]o. Release is from more than a single compartment, since plots of the log10 of the synaptosomal D-aspartate content (calculated from the label content) as a function of the incubation time are non-linear for all incubation solutions. In the previous study which utilizedl-glutamate pre-loading, the results were consistent with either a model consisting of two passive compartments (that is, synaptosomal content T as a function of time is given by Ae–Kat+Be–Kbt, in which A and B are compartment sizes, Ka and Kb are exchange constants, and t is incubation time) or a model consisting of one passive compartment (Ae–Kat) and one saturated carrier compartment (T-Kbt, in which T=total content at zero time and Kb=maximal velocity). The present results withd-aspartate also give excellent fits to these models. However, there are some quantitative differences in the estimates of the compartment sizes and exchange constants, which are obtained by optimizing the fit of the data to the equation for each model. Although most of these quantitative differences appear to be minor, one difference between the two studies is of potential significance in interpretation of the results. In the glutamate study, all depolarizing media were found to reduce the exchange constant for the carrier mechanism, while in the present study, depolarizing media were found to increase the exchange constant, with the exception of veratrine-containing medium without calcium.  相似文献   

2.
N-Acetylaspartylglutamate (NAAG) is a nervous system-specific dipeptide that is released from retinal neurons on depolarization. In the present study, extracellular metabolism, uptake, and release of [3H]NAAG were examined in the chick retina. After in vitro incubation with NAAG radiolabeled in the glutamate moiety, [3H]glutamate and [3H]NAAG increased in retinal cells through time- and temperature-dependent processes, which were reduced in the absence of extracellular sodium. Coincubation of cells with [3H]NAAG and aspartylglutamate or phosphate resulted in the decreased extracellular appearance of [3H]glutamate, produced by hydrolysis of radiolabeled NAAG, and a consequent increased availability of [3H]NAAG for transport into the retinal cells. When this tissue was incubated with radiolabeled NAAG, glutamate, glutamine, or aspartate under similar conditions, only [3H]NAAG served as a significant source for the appearance of intracellular [3H]NAAG. These data support the conclusion that [3H]NAAG can be transported into retinal cells, whereas [3H]glutamate transport is the predominant process after release of this amino acid from NAAG by extracellular peptidase activities. After uptake, [3H]NAAG entered a cellular pool, from which the peptide was secreted under depolarizing conditions and in a calcium-dependent manner.  相似文献   

3.
Glutamate (10-100 microM) reversibly depolarizes guinea-pig cerebral cortical synaptosomes. This does not appear to be because of a conventional autoreceptor. Neither kainate at 1 mM, 100 microM N-methyl-D-aspartate (NMDA), 100 microM L-2-amino-4-phosphonobutanoate (APB), nor 100 microM quisqualate affects the Ca2+-dependent release of glutamate from suboptimally depolarized synaptosomes. However, kainate, quisqualate, and the quisqualate agonists beta-N-oxalylamino-L-alanine and alpha-amino-3-hydroxy-5-methylisoxazole propionate cause a slow Ca2+-independent release of glutamate from polarized synaptosomes. However, unlike kainate, quisqualate does not inhibit the acidic amino acid carrier. APB, NMDA, and the NMDA receptor-mediated neurotoxin beta-N-methylamino-L-alanine do not influence Ca2+-independent release at 100 microM. The depolarization of the plasma membrane by glutamate can be mimicked by D-aspartate, can be blocked by the transport inhibitor dihydrokainate, and is accompanied by the net uptake of acidic amino acids. L-Glutamate or D-aspartate at 100 microM increases the cytoplasmic free Ca2+ concentration. D-aspartate at 100 microM causes a Ca2+-dependent release of endogenous glutamate, superimposed on the Ca2+-independent heteroexchange with glutamate through the acidic amino acid carrier. The results suggest that the glutamatergic subpopulation of synaptosomes can be depolarized by exogenous glutamate.  相似文献   

4.
Depolarization-elicited release of neurotransmitter glutamate was studied in rat cerebellar slices previously loaded with either [3H]l-glutamate or [3H]l-glutamine. Both depolarization conditions used (e.g. long-lasting tonic depolarization elicited by veratridine, or short repetive electrical pulses) increased 6 to 8 folds the release of labelled glutamate and of another compound, presumably alpha-ketoglutarate, without modifying the release of labeled glutamine. Because of the position of the label in the precursor radioactive molecules, GABA was weakly labeled and aspartate was unlabeled. The properties of the evoked glutamate release from cerebellar slices were those of a neurotransmitter since it was inhibited by tetrodotoxin and was Ca2+-dependent. Alpha-ketoglutarate is either coreleased from nerve terminals or is released from astrocytes and could participate in glutamate recycling. The data confirm the generally accepted model implying the presence of two neurotransmitter glutamate pools, a neuronal pool of newly synthesized glutamate and an astrocytic storage pool, but in addition indicate that the former is in rapid isotopic equilibrium with the extracellular compartment. Our present results also indicate that the glutamate/glutamine cycle is not activated in depolarizing conditions.With the technical assistance of O. LEVY1 and K. WINDISCH2  相似文献   

5.
Synaptosome preparations were utilized to characterize the release and compartmentalization of immunoreactive insulin (IRI) in the adult rat brain. Depolarization of synaptosomes by elevation of the external potassium ion concentration elicited release of IRI from the synaptosomes into the incubation medium. This release was reduced or eliminated under three conditions known to prevent depolarization-induced Ca2+ flux: elevating the external MgCl2, adding CoCl2, and eliminating external Ca2+ with EGTA. Depolarization of synaptosomes by veratridine also elicited release of synaptosomal IRI. This release was inhibited by tetrodotoxin. The amount of IRI released under depolarizing conditions represented 3-7% of that contained in the synaptosomes. High levels of IRI release also were observed upon removal of external Na+ to allow depolarization-independent influx of external Ca2+ into the synaptosomal compartment. The Ca2+ dependency of synaptosomal IRI release suggests IRI is stored in the adult rat brain in synaptic vesicles within nerve endings from which it can be mobilized by exocytosis in association with neural activity.  相似文献   

6.
Tetanus toxin (100 nM) when preincubated with guinea pig cerebrocortical synaptosomes for 45 min reduces the final extent of the KCl-evoked, Ca(2+)-dependent, glutamate transmitter release to 30% of non-intoxicated controls. Similarly, 100 nM Botulinum neurotoxins, types A and B, preincubated for 90 min inhibit release to 45-60% of non-intoxicated controls. The toxins preferentially attenuate a slow phase of KCl-evoked glutamate release which may be associated with synaptic vesicle mobilization. Tetanus toxin additionally inhibits the release of aspartate, gamma-aminobutyric acid and met-enkephalin from the same preparation. Since amino acids and neuropeptides are released by distinct mechanisms, this indicates that the toxin affects a step common to both exocytotic pathways. When Ba2+ (which does not interact with calmodulin) is substituted for Ca2+, the control KCl-evoked release of each transmitter is unaffected and tetanus toxin is still inhibitory. Taken together these results implicate a calmodulin-independent locus (or loci) of action common to small- and large-dense-core vesicles and associated with vesicle transport.  相似文献   

7.
Abstract— —The site of origin of transmitter amino acids released by depolarizing agents from nerve endings was studied. The model used was the incubated and depolarized synaptosome preparation from which the component soluble, synaptic vesicle, membrane and mitochondrial sub-fractions were obtained. Synaptosomal amino acids were radioactively labelled from D-[U-14C]glucose in vivo by intraventricular injection and in vitro during subsequent incubation. The specific radioactivities of amino acids released in response to K+ (56 mM) or veratrine (75 μM) were found to closely resemble those of the soluble cytoplasmic fraction, in most cases differing significantly from those of the other fractions. The specific radioactivity of the GABA and aspartate released by K+ stimulation and the GABA and glutamate released by veratrine were significantly different from that of the vesicles in each case. The specific radioactivities of glutamate released by both agents, and also GABA with K+ stimulation, were approximately double that of the amino acid released in control conditions. Depletion of the soluble cytoplasmic pools of glutamate, GABA and aspartate occurred following stimulation, corresponding to the induced-release of these compounds. Turnover of the amino acids in the other subfractions was too low to account for their participation in the release process in addition to the soluble cytoplasmic pool. A cytoplasmic origin of release of neurotransmitter amino acids from nerve endings is proposed.  相似文献   

8.
Although numerous biochemical and electrophysiological studies have already established many of the properties of the putative Ca2+ receptor for exocytosis at the synapse, the molecular mechanism that involves the influx of Ca2+ and the release of neurotransmitters has remained elusive. Several relationships have been established between neurotransmitter release and Ca2+ channel involved, but no work attempting to connect a particular neurotransmitter release, the effector which produces the release and the opening of a Ca2+ channel type has been performed. This work shows, data dealing with this subject. Based on our results, we have reached the following conclusions: (1) Ca2+ channel types P/Q, N and L mediate Ca2+ entry evoked by high KCl and veratridine, and P/Q and N but not L-type Ca2+ channels are involved when the effector is 4-aminopyridine (4-AP); (2) When we compare the relationship between the amino acid release and the Ca2+ channels which are opened by different depolarizing agents, we find that the release of a particular amino acid neurotransmitter not only depends on the opening of the voltage-dependent Ca2+ channel but also on the effector which produces the opening; and (3) the amount of amino acid release evoked by the different depolarizing agents is not correlated with the elevation of intracellular Ca2+ produced by them. From all of these results, we may conclude that calcium concentration in the active zone is not the only important factor in mediating amino acid release.  相似文献   

9.
Glutamate-mediated excitotoxicity plays a major role in the degeneration of motor neurons in amyotrophic lateral sclerosis and reduced astrocytary glutamate transport, which in turn increases the synaptic availability of the amino acid neurotransmitter, was suggested as a cause. Alternatively, here we report our studies on the exocytotic release of glutamate as a possible source of excessive glutamate transmission. The basal glutamate efflux from spinal cord nerve terminals of mice-expressing human soluble superoxide dismutase (SOD1) with the G93A mutation [SOD1/G93A(+)], a transgenic model of amyotrophic lateral sclerosis, was elevated when compared with transgenic mice expressing the wild-type human SOD1 or to non-transgenic controls. Exposure to 15 mM KCl or 0.3 μM ionomycin provoked Ca(2+)-dependent glutamate release that was dramatically increased in late symptomatic and in pre-symptomatic SOD1/G93A(+) mice. Increased Ca(2+) levels were detected in SOD1/G93A(+) mouse spinal cord nerve terminals, accompanied by increased activation of Ca(2+)/calmodulin-dependent kinase II and increased phosphorylation of synapsin I. In line with these findings, release experiments suggested that the glutamate release augmentation involves the readily releasable pool of vesicles and a greater capability of these vesicles to fuse upon stimulation in SOD1/G93A(+) mice.  相似文献   

10.
Contribution of Na/Ca transport to the resting membrane potential   总被引:1,自引:1,他引:0       下载免费PDF全文
Relations are derived that describe the combined effects of electrodiffusion, the Na/K pump, and Na/Ca transport by carrier on the resting membrane potential. Equations are derived that apply to both steady-state and non-steady-state conditions. Some example calculations from the equations are plotted at different permeability coefficient ratios, PK:PCa:PNa. The equations predict a depolarizing action of Na/Ca transport when more than two Na ions per Ca ion are transported by the carrier. For all permeability ratios examined, a steady state for Ca ions is achieved with at most a few millivolts of depolarization.  相似文献   

11.
Alanine metabolism, transport, and cycling in the brain   总被引:2,自引:1,他引:1  
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na+-dependent transporters with properties similar to system B0 isoform B0AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.  相似文献   

12.
Optimal conditions for amino acid incorporation into protein in vitro by isolated skeletal muscle mitochondria were established. Maximum incorporation rates were obtained when atractylate and glutamate were added to the incubation medium in the absence of any exogenous adenine nucleotides. Under these conditions, the rate of amino acid incorporation was more than 5-fold greater than that observed with glutamate and ADP and nearly 12-fold greater than that observed with ATP and an ATP-regenerating system consisting of phosphoenolpyruvate and pyruvate kinase. The optimal concentrations of adenine nucleotides, glutamate, cofactors and the substrate leucine were determined for all three energy-providing systems. The inhibitors of protein synthesis, puromycin and chloramphenicol, completely blocked amino acid incorporation by isolated skeletal muscle in mitochondria, while cycloheximide had no effect. Analysis of the labeled mitochondrial proteins by sodium dodecylsulfate polyacrylamide gel electrophoresis revealed five labeled bands of molecular weights ranging from 38,000 to 10,000.Amino acid incorporation by skeletal muscle mitochondria isolated from diabetic rats was decreased over 60% as compared to mitochondria from controls when measured in the presence of glutamate and atractylate, ADP and glutamate or the ATP regenerating system. By contrast, amino acid incorporation by liver mitochondria isolated from diabetic rats did not differ significantly from control values when measured with four different energy sources.  相似文献   

13.
Glutamate and/or aspartate is the probable transmitter released from synaptic terminals of the CA3-derived Schaffer collateral, commissural, and ipsilateral associational fibers in area CA1 of the rat hippocampal formation. Slices of the CA1 area were employed to test the effects of adenosine- and gamma-aminobutyrate (GABA)-related compounds on the release of glutamate and aspartate from this projection. Under the conditions of these experiments, the release of glutamate and aspartate evoked by 50 mM K+ was more than 90% Ca2+-dependent and originated predominantly from the CA3-derived pathways. Adenosine reduced the K+-evoked release of glutamate and aspartate by a maximum of about 60%, but did not affect the release of GABA. This action was reversed by 1 microM 8-phenyltheophylline. The order of potency for adenosine analogues was as follows: L-N6-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than D-N6-phenylisopropyladenosine approximately equal to 2-chloroadenosine greater than adenosine much greater than 5'-N-ethylcarboxamidoadenosine. 8-Phenyltheophylline (10 microM) by itself enhanced glutamate/aspartate release, whereas dipyridamole alone depressed release. These results support the view that adenosine inhibits transmission at Schaffer collateral-commissural-ipsilateral associational synapses mainly by reducing transmitter release and that these effects involve the activation of an A1 receptor. Neither adenosine, L-N6-phenylisopropyladenosine, nor 8-phenyltheophylline affected the release of glutamate or aspartate evoked by 10 microM veratridine. The differing effects of adenosine compounds on release evoked by K+ and veratridine suggest that A1 receptor activation either inhibits Ca2+ influx through the voltage-sensitive channels or interferes with a step subsequent to Ca2+ entry that is coupled to the voltage-sensitive Ca2+ channels in an obligatory fashion. Neither baclofen nor any other agent active at GABAB or GABAA receptors affected glutamate or aspartate release evoked by elevated K+ or veratridine. Therefore, either baclofen does not inhibit transmission at these synapses by depressing transmitter release or else it does so in a way that cannot be detected when a chemical depolarizing agent is employed.  相似文献   

14.
The nonessential amino acids glutamate, aspartate, glutamine, -minobutyrate (GABA), alanine, glycine, and proline present in rat thin brain cortex slices were labeled by in vitro incubation of these with [U-14C]glucose, and the efflux of such endogenous radioactive amino acids and of lactate was studied in a superfused system, under control conditions or when the slices were depolarized by various procedures. When electrical stimuli known to induce selective neurotransmitter release (1 or 1.5 volt, sine wave 60 Hz) were applied for 10 sec to the slices, no significant increase in amino acid efflux was found. When more intense stimuli (4 volt, 60 Hz) were applied for 60 sec, or extracellular potassium was raised to 56 mM, both conditions being known to induce nonselective substance release, the efflux of essentially all amino acids and of lactate was markedly increased. Increases in efflux were proportionately larger for glutamate, aspartate, and -aminobutyrate, and this could be accounted for by their greater intracellular chemical (or electrochemical) potentials, but not because of a selective release mechanism for them. Amino acids were analyzed as their 1-dimethylaminonaphthalene-5-sulfonyl (dansyl) derivatives, by a modification of existing procedures in which the dansyl (DNS) derivatives were efficiently extracted from acidified incubation fluid into an organic phase. This rapidly desalted the derivatives and allowed their concentration and chromatographic separation on thin-layer silica gel sheets with little loss.  相似文献   

15.
alpha-Latrotoxin causes a massive release of endogenous glutamate from guinea-pig cerebrocortical synaptosomes. There appear to be two components to the release. In the first 2 min following addition of 1.3 nM alpha-latrotoxin, glutamate release is largely energy dependent. Superimposed upon this release is a more slowly developing but ultimately much more extensive release of cytoplasmic glutamate together with gamma-aminobutyric acid and nonvesicular amino acids such as aspartate and alpha-aminoisobutyrate. In parallel with this cytoplasmic release there is an extensive depletion of ATP, a massive rise in cytoplasmic free Ca2+ concentration, and a severe restriction of synaptosomal respiratory capacity. The cytoplasmic release is only partially Na+ dependent, eliminating a simple reversal of the plasma membrane acidic amino acid carrier. It is concluded that alpha-latrotoxin releases both transmitter and cytoplasmic pools of amino acids in synaptosomes and causes a major disruption of terminal integrity.  相似文献   

16.
Mouse cerebral cortical mini-slices were used in a superfusion system to monitor depolarization-induced (55 mM K+) release of preloaded [2,3-3H]GABA and to investigate the biosynthesis of glutamate, GABA and aspartate during physiological and depolarizing (55 mM K+) conditions from either [1,6-13C]glucose or [U-13C]glutamine. Depolarization-induced GABA release could be reduced (50%) by the GABA transport inhibitor tiagabine (25 μM) or by replacing Ca2+ with Co2+. In the presence of both tiagabine and Co2+ (1 mM), release was abolished completely. The release observed in the presence of 25 μM tiagabine thus represents vesicular release. Superfusion in the presence of [1,6-13C]glucose led to considerable labeling in the three amino acids, the labeling in glutamate and aspartate being increased after depolarization. This condition had no effect on GABA labeling. For all three amino acids, the distribution of label in the different carbon atoms revealed on increased tricarboxylic acid (TCA) activity during depolarization. When [U-13C]glutamine was used as substrate, labeling in glutamate was higher than that in GABA and aspartate and the fraction of glutamate and aspartate being synthesized by participation of the TCA cycle was increased by depolarization, an effect not seen for GABA. However, GABA synthesis reflected TCA cycle involvement to a much higher extent than for glutamate and aspartate. The results show that this preparation of brain tissue with intact cellular networks is well suited to study metabolism and release of neurotransmitter amino acids under conditions mimicking neural activity. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

17.
The excitatory action of kainic and glutamic acids in chick whole retina was demonstrated as an immediate stimulation of the release of labeled gamma-aminobutyric acid (GABA) and glycine in a superfusion system. This stimulatory effect was 3-10 times greater than that produced by a depolarizing K+ concentration; in addition, it was independent of Ca2+ in the medium, but notably inhibited when Na+ was omitted from the medium. Under identical experimental conditions, neither kainic nor glutamic acid had any effect on the release of labeled dopamine or alpha-aminoisobutyric acid, thus indicating that their effect is not unspecific or due to cell damage. Similar although less marked stimulation of labeled GABA and glycine release by kainic acid was obtained in subcellular retinal fractions, particularly in fraction P1, which contained photoreceptor terminals and outer segments. This stimulation was also Ca2+ independent and greatly reduced when Na+ was omitted from the medium. It is suggested that the stimulation of GABA release by kainic and glutamic acids is probably due to a Na+-dependent, carrier-mediated mechanism that responds to the entry of Na+ produced by the interaction of glutamic and kainic acids with retinal membranes. In cortical or striatal slices from mouse brain, these acids had a negligible stimulatory effect on GABA and dopamine release.  相似文献   

18.
Non-selective slow vacuolar (SV) channels mediate uptake of K+ and Na+ into vacuolar compartment. Under salt stress plant cells accumulate Na+ in the vacuole and release vacuolar K+ into the cytoplasm. It is, however, unclear how plants mediate transport of K+ from the vacuole without concomitant efflux of toxic Na+. Here we show by patch-clamp studies on isolated Arabidopsis thaliana cell culture vacuoles that SV channels do not mediate Na+ release from the vacuole as luminal Na+ blocks this channel. Gating of the SV channel is dependent on the K+ gradient across the vacuolar membrane. Under symmetrical K+ concentrations on both sides of the vacuolar membrane, SV channels mediate potassium uptake. When cytoplasmic K+ decreases, SV channels allow K+ release from the vacuole. In contrast to potassium, Na+ can be taken up by SV channels, but not released even in the presence of a 150-fold gradient (lumen to cytoplasm). Accumulation of Na+ in the vacuole shifts the activation potential of SV channels to more positive voltages and prevents gradient-driven efflux of K+. Similar to sodium, under physiological conditions, vacuolar Ca2+ is not released from vacuoles via SV channels. We suggest that a major Arabidopsis SV channel is equipped with a positively charged intrinsic gate located at the luminal side, which prevents release of Na+ and Ca2+, but permits efflux of K+. This property of the SV channel guarantees that K+ can shuttle across the vacuolar membrane while maintaining Na+ and Ca2+ stored in this organelle.  相似文献   

19.
Evoked release of glutamate and aspartate from cultured cerebellar granule cells was studied after preincubation of the cells in tissue culture medium with glucose (6.5 mM), glutamine (1.0 mM),d[3H] aspartate and in some cases aminooxyacetate (5.0 mM) or phenylsuccinate (5.0 mM). The release of endogenous amino acids and ofd-[3H] aspartate was measured under physiological and depolarizing (56 mM KCl) conditions both in the presence and absence of calcium (1.0 mM), glutamine (1.0 mM), aminooxyacetate (5.0 mM) and phenylsuccinate (5.0 mM). The cellular content of glutamate and aspartate was also determined. Of the endogenous amino acids only glutamate was released in a transmitter fashion and newly synthesized glutamate was released preferentially to exogenously suppliedd-[3H] aspartate, a marker for exogenous glutamate. Evoked release of endogenous glutamate was reduced or completely abolished by respectively, aminooxyacetate and phenylsuccinate. In contrast, the release ofd-[3H] aspartate was increased reflecting an unaffected release of exogenous glutamate and an increased psuedospecific radioactivity of the glutamate transmitter pool. Since aminooxyacetate and phenylsuccinate inhibit respectively aspartate aminotransferase and mitochondrial keto-dicarboxylic acid transport it is concluded that replenishment of the glutamate transmitter pool from glutamine, formed in the mitochondrial compartment by the action of glutaminase requires the simultaneous operation of mitochondrial keto-dicarboxylic acid transport and aspartate aminotransferase which is localized both intra- and extra-mitochondrially. The purpose of the latter enzyme apparently is to catalyze both intra- and extra-mitochondrial transamination of -ketoglutarate which is formed intramitochondrially from the glutamate carbon skeleton and transferred across the mitochondrial membrane to the cytosol where transmitter glutamate is formed. This cytoplasmic origin of transmitter glutamate is in aggreement with the finding thatd-[3H] aspartate readily labels the transmitter pool even when synthesis of endogenous transmitter is impaired in the presence of AOAA or phenylsuccinate.Special issue dedicated to Dr Elling Kvamme  相似文献   

20.
A specific effect of Cu2+ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 100 microM CuCl2 was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25 degrees C. The release of amino acids was partial, and the composition of the amino acids released was different from that of those retained in the cells. Mostly glutamate was released, but arginine was mainly retained in the cells. Cellular K+ was released rapidly after CuCl2 addition, but 30% of the total K+ was retained in the cells. These and other observations suggested that Cu2+ caused selective lesions of the permeability barrier of the plasma membrane but did not affect the permeability of the vacuolar membrane. These selective changes were not induced by the other divalent cations tested. A novel and simple method for differential extraction of vacuolar and cytosolic amino acid pools by Cu2+ treatment was established. When Ca2+ was added to Cu2+-treated cells, a large amount of Ca2+ was sequestered into vacuoles, with formation of an inclusion of a Ca2+-polyphosphate complex in the vacuoles. Cu2+-treated cells also showed enhanced uptake of basic amino acids and S-adenosylmethionine. The transport of these substrates showed saturable kinetics with low affinities, reflecting the vacuolar transport process in situ. With Cu2+ treatment, selective leakage of K+ from the cytosolic compartment appears to create a large concentration gradient of K+ across the vacuolar membrane and generates an inside-negative membrane potential, which may provide a driving force of uptake of positively charged substances into vacuoles. Cu2+ treatment provides a useful in situ method for investigating the mechanisms of differential solute pool formation and specific transport phenomena across the vacuolar membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号