首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The alpha- and beta-anomers of arabinose 1,5-bisphosphate and ribose 1,5-bisphosphate were tested as effectors of rat liver 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Both anomers of arabinose 1,5-bisphosphate activated the kinase and inhibited the bisphosphatase. The alpha-anomer was the more effective kinase activator while the beta-anomer was the more potent inhibitor of the bisphosphatase. Inhibition of the bisphosphatase by both anomers was competitive, and both potentiated allosteric inhibition by AMP. beta-Arabinose 1,5-bisphosphate was also more effective in decreasing fructose 2,6-bisphosphate binding to the enzyme. Neither anomer of ribose 1,5-bisphosphate affected 6-phosphofructo-1-kinase or fructose-1,6-bisphosphatase, indicating that the configuration of the C-2 (C-3 in Fru 2,6-P2) hydroxyl group is important for biological activity. These results are also consistent with arabinose 1,5-bisphosphate binding to the active site and thereby enhancing the interaction of AMP with the allosteric site.  相似文献   

2.
Deoxyfuconojirimycin (1,5-dideoxy-1,5-imino-L-fucitol) is a potent, specific and competitive inhibitor (Ki 1 x 10(-8) M) of human liver alpha-L-fucosidase (EC 3.2.1.51). Six structural analogues of this compound were synthesized and tested for their ability to inhibit alpha-L-fucosidase and other human liver glycosidases. It is concluded that the minimum structural requirement for inhibition of alpha-L-fucosidase is the correct configuration of the hydroxy groups at the piperidine ring carbon atoms 2, 3 and 4. Different substituents in either configuration at carbon atom 1 (i.e. 1 alpha- and beta-homofuconojirimycins) and at carbon atom 5 may alter the potency but do not destroy the inhibition of alpha-L-fucosidase. The pH-dependency of the inhibition by these amino sugars suggests very strongly that inhibition results from the formation of an ion-pair between the protonated inhibitor and a carboxylate group in the active site of the enzyme. Deoxymannojirimycin (1,5-dideoxy-1,5-imino-D-mannitol) is also a more potent inhibitor of alpha-L-fucosidase than of alpha-D-mannosidase. This can be explained by viewing deoxymannojirimycin as beta-L-homofuconojirimycin lacking the 5-methyl group. Conversely, beta-L-homo analogues of fuconojirimycin can also be regarded as derivatives of deoxymannojirimycin. This has permitted deductions to be made about the structural requirements of inhibitors of alpha- and beta-D-mannosidases.  相似文献   

3.
alpha-1,4-Glucan lyase cleaves alpha-1,4-linkages of nonreducing termini of alpha-1,4-glucans to produce 1,5-anhydrofructose (1,5-AnFru). The enzymes isolated from fungi and algae show high homology with glycoside hydrolase family 31. Purification of alpha-1,4-glucan lyase from rat liver using DEAE Cellulose chromatography resulted in separation of two enzymatic active fractions, one was bound to the column and the other was in the flow-through. Partial amino acid sequence determined from the lyase, retained on the anion exchange column, were identical with that of the N:-linked oligosaccharide processing enzyme glucosidase II. The lyase showed similar enzymatic properties as the microsomal glucosidase such as inhibition by 1-deoxynojirimycin and castanospermine. On the other hand, glucosidase II purified from rat liver microsomes produced not only glucose but also a small amount of 1,5-AnFru using maltose as substrate. Furthermore, CHO cells overexpressing pig liver glucosidase II showed a 1.5- to 2-fold higher lyase activity compared to the nontransfected CHO cells. Conversely, no lyase activity was detectable either in PHAR2.7, the glucosidase II-deficient mutant from a mouse lymphoma cell line, or in Saccharomyces cerevisiae strain YG427 having the glucosidase II gene disrupted. These data demonstrate that glucosidase II possesses an additional enzymatic activity of releasing 1,5-AnFru from maltose.  相似文献   

4.
Resolution of (2RS,3RS)-2-[alpha-(2-methoxymethoxyphenoxy)phenylmethyl]morpholine, 11, with (+) mandelic acid led to the formation of (+)-(2S,3S)-2-[alpha-(2-methoxymethoxyphenoxy)phenyl methyl] morpholine (11a). Compound 11 was synthesized in seven steps from (2RS,3RS)-cinnamyl alcohol-2,3-epoxide (4), with an overall yield of 17%. Cleavage of the methoxymethyl group of the Fmoc derivative 12 with catalytic amounts of p-toluenesulfonic acid in methanol afforded (+)-(2S,3S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2. The synthetic utility as well as the configuration of compound 2 has been demonstrated by converting (S,S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2 to (2S,3S)-2-[alpha-(2-ethoxyphenoxy)phenylmethyl]morpholine (1) and (2S,3S)-2-(2-methoxyphenoxy) benzyl)morpholine (16), two potential norepinephrine reuptake inhibitors under clinical evaluation.  相似文献   

5.
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.  相似文献   

6.
A galactoglucomannan (GGM), isolated from the lichen Cladonia ibitipocae, consisted of a (1-->6)-linked main chain of alpha-mannopyranose units, substituted by alpha- and beta-D-galacto (alpha- and beta-D-Galp)-, beta-D-gluco (beta-D-Glcp)- and alpha-D-mannopyranosyl (alpha-D-Manp) groups, and was sulfated giving a sulfated polysaccharide (GGM-SO4) with 42.2% sulfate corresponding to a degree of substitution of 1.29. NMR studies indicated that after sulfation, the OH-6 groups of galactopyranosyl and mannopyranosyl units were preferentially substituted. GGM-SO4 was investigated in terms of its in vitro anticoagulant and in vivo antithrombotic properties. Those of the former were evaluated by its activated partial thromboplastin (APTT) and thrombin time (TT), using pooled normal human plasma, and compared with that of 140 USP units mg(-1) for a porcine intestinal mucosa heparin. Anticoagulant activity was detected in GGM-SO4, but not in GGM. The in vivo antithrombotic properties of GGM-SO4 were evaluated using a stasis thrombosis model in Wistar rats, intravenous administration of 2 mg kg(-1) body weight totally inhibiting thrombus formation. It caused dose-dependent increases in tail transection bleeding time. The results obtained showed that this sulfated polysaccharides is a promising anticoagulant and antithrombotic agent.  相似文献   

7.
An exo-arabinanase, designated Abnx, was purified from a culture filtrate of Penicillium chrysogenum 31B by ammonium sulfate precipitation, anion-exchange chromatography, and hydrophobic chromatography. Abnx had an apparent molecular mass of 47 kDa. The enzyme released only arabinobiose from the nonreducing terminus of alpha-1,5-L-arabinan and showed no activity towards p-nitrophenyl-alpha-L-arabinofuranoside and alpha-1,5-L-arabinofuranobiose. Abnx is the first enzyme with this mode of action.  相似文献   

8.
Cellvibrio japonicus arabinanase Arb43A hydrolyzes the alpha-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans. The three-dimensional structure of Arb43A, determined at 1.9 A resolution, reveals a five-bladed beta-propeller fold. Arb43A is the first enzyme known to display this topology. A long V-shaped surface groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. Three carboxylates deep in the active site groove provide the general acid and base components for glycosidic bond hydrolysis with inversion of anomeric configuration.  相似文献   

9.
2-Deoxy-beta-D-ribose 1-phosphate (1) was synthesized in a stereoselective manner and isolated with no detectable contamination by its alpha-isomer (4). Explicit configuration of 4 was first determined by NMR comparison with 1 judging from NOE results and their coupling constants. Natural purine nucleoside phosphorylase (PNPase) did not recognize 1 and gave no products such as alpha- or beta-deoxynucleosides.  相似文献   

10.
Penicillium chrysogenum exo-arabinanase (Abnx), which releases arabinobiose from the nonreducing terminus of alpha-1,5-L-arabinan, was found to possess trans-arabinobiosylation activity on various acceptors, such as aliphatic alcohols, sugars, and sugar alcohols. Abnx was found to prefer primary hydroxyl groups in polyhydric alcohols as acceptors over primary hydroxyl groups in monohydric alcohols. Among the 21 different compounds tested, glycerol was the best acceptor for the enzyme. The transfer product of glycerol was identified as O-alpha-L-arabinosyl-(1-->5)-O-alpha-L-arabinosyl-(1-->1)-glycerol on the basis of the spectral data, fast atom bombardment-mass and 1H- and 13C-NMR. Unlike endo-arabinanases, Abnx catalyzed the hydrolysis of linear arabinan without inverting the anomeric configuration.  相似文献   

11.
A synthetic study on alpha-(1-->4) and alpha-(1-->8)-fucosylation of sialic acid is reported, with the ultimate aim being the total assembly of the glycan portion of HPG-series gangliosides. In both types of fucosylations, the combination of a phenylthio fucosyl donor and a 1,5-lactamized acceptor provided high-yielding glycosylations to afford alpha-fucosyl-sialic acid sequences. The obtained alpha-Fucp-(1-->8)-NeupNAc glycan having a 1,5-lactam bridge has been successfully transformed into the corresponding glycosyl donor.  相似文献   

12.
Treatment of 2-acetamido-2-deoxy-D-mannono-1,4-lactone with dicyclohexylamine in ethanolic solution afforded an unsaturated 1,4-lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,4-lactone (1), in good yield. 2-Acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone (2) was similarly prepared from 2-acetamido-2-deoxy-D-galactono-1,4-lactone. An unsaturated 1,5-lactone, 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,5-lactone (4), was obtained through the oxidation of 2-acetamido-2-doexy-4,6-0-isopropylidene-D-galactopyranose with silver carbonate on Celite, followed by mild hydrolysis. The inhibitory activity of four isomeric 2-acetamido-2,3-dideoxy-D-hex-2-enonolactones [1, 2, 4, and 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (3)] was assayed against 2-acetamido-2-deoxy-beta-D-glucosidase from bull epididymis. Only the erythro lactones 1 and 3 are weak competitive inhibitors, whereas the threo lactones 2 and 4 are practically inactive. The 1,4-lactone 1 inhibited 2-acetamido-2-deoxy-beta-D-glucosidase more strongly than the 1,5-lactone 3. The lactones 1-4 were found to be quite stable in aqueous solution or under inhibitory-assay conditions. In addition, two 2-acetamido-2-deoxy-D-glycals, 2-acetamido-1,5-anhydrohex-1-enitol (7) were tested; both are 10 times as active as 1.  相似文献   

13.
The composition of the 2-keto aldoses D-glucosone (1), 6-deoxy-D-glucosone (2), D-allosone (3), and D-galactosone (4) in organic solvents has been determined using NMR spectroscopy. Whereas these keto aldoses form mixtures with up to 15 different isomers in water, the number of forms is significantly decreased in organic solvents. Equilibrium mixtures of 1, 2, and 4 in Me(2)SO, DMF, and pyridine consist to 70-90% of the prevailing alpha-1,5-pyranose form. Two bicyclic forms with a proportion of 80% are the main isomers of 3 in pyridine. Generally, forms with non-hydrated keto functions prevail in non-aqueous solutions.  相似文献   

14.
Z H Li  L Li 《Steroids》1990,55(12):565-570
The molecular structures and absolute configurations of alpha- and beta-anordrins are reported. Pure alpha- and beta-epimers were obtained with recrystallization and column chromatography combined with high-pressure liquid chromatography methods; they were identified by high-resolution infrared and mass spectra and 1H and 13C nuclear magnetic resonance. By single crystal x-ray diffraction analysis, the crystals of alpha- and beta-epimers were found to belong to the orthorhombic space groups P2(1)2(1)2(1) and P2(1)2(1)2, respectively. The molecular structures of these two epimers were determined. The absolute configurations were deduced by conformation analysis, 1H nuclear magnetic resonance, and comparison with the absolute configuration of the starting material. The absolute configurations of asymmetric centers of alpha- and beta-epimers were observed to be 2R, 5S, 8R, 9S, 10S, 13S, 14S, 17R, and 2S, 5S, 8R, 9S, 10S, 13S, 14S, 17R, respectively. These results were confirmed by the x-ray diffraction determination of the absolute configuration of 2 alpha,17 alpha-diethynyl-A-nor-5 alpha- androstane-2 beta, 17 beta-diol dichloroacetate.  相似文献   

15.
16.
The digestion of the plant cell wall requires the concerted action of a diverse repertoire of enzyme activities. An important component of these hydrolase consortia are arabinofuranosidases, which release L-arabinofuranose moieties from a range of plant structural polysaccharides. The anaerobic bacterium Clostridium thermocellum, a highly efficient plant cell wall degrader, possesses a single alpha-L-arabinofuranosidase (EC 3.2.1.55), CtAraf51A, located in GH51 (glycoside hydrolase family 51). The crystal structure of the enzyme has been solved in native form and in 'Michaelis' complexes with both alpha-1,5-linked arabinotriose and alpha-1,3 arabinoxylobiose, both forming a hexamer in the asymmetric unit. Kinetic studies reveal that CtAraf51A, in contrast with well-characterized GH51 enzymes including the Cellvibrio japonicus enzyme [Beylot, McKie, Voragen, Doeswijk-Voragen and Gilbert (2001) Biochem. J. 358, 607-614], catalyses the hydrolysis of alpha-1,5-linked arabino-oligosaccharides and the alpha-1,3 arabinosyl side chain decorations of xylan with equal efficiency. The paucity of direct hydrogen bonds with the aglycone moiety and the flexible conformation adopted by Trp(178), which stacks against the sugar at the +1 subsite, provide a structural explanation for the plasticity in substrate specificity displayed by the clostridial arabinofuranosidase.  相似文献   

17.
Sallam MA 《Chirality》2006,18(10):790-798
The circular dichroism (CD) of a series of acyclic C-nucleoside analogs; 4-(pentahydroxypentyl-1-yl)-2-phenyl-2H-1,2,3-triazoles [1-5] and 4-(D-glycero-D-gulo)-2-phenyl-2H-1,2,3-triazole 6, are reported. A correlation between the sign of the Cotton effect at the maximal UV absorption and the absolute configuration of the carbon atom alpha- to the triazole base moiety is reported. The CD of anomeric 4-(alpha,beta-D-arabinofuranosyl)- and 4-(alpha,beta-D-arabinopyranosyl)-2-phenyl-2H-1,2,3-triazole C-nucleosides are reported. The assignment of the anomeric configuration of C-glycosyl-2-phenyl-2H-1,2,3-triazoles from their CD spectra was found to be a simple method that relies on comparison of the sign of the Cotton effect at the maximal UV absorption and the absolute configuration of the anomeric carbon atom. A correlation between the anomeric configuration and the sign of the Cotton effect at the maximal UV absorption is deduced and generalized as a rule for prediction of the anomeric configuration of C-glycosyl-2-phenyl-2H-1,2,3-triazoles. Nuclear Overhauser effect and 13C NMR spectra supported the CD assignment rule.  相似文献   

18.
To examine whether 1,5-anhydroglucitol (AG) is derived from starch degradation in plant tissues, we colorimetrically measured AG contents of germinating amaranth seeds and ripening banana pulp. In both cases, as starch degradation proceeded, AG levels were significantly increased, but were 1,700-5,000 times lower than those of total soluble carbohydrates. alpha-1,4-Glucan lyase activity, which is measured by the 1,5-anhydrofructose (AF) liberated from non-reducing glucose residues of starch or glycogen, was too low to be detected in amaranth or banana by the 3,5-dinitrosalicylic acid method. On the other hand, AF reductase, which reduces AF to AG, was detected in germinating amaranth seeds and banana pulp. Thus, the increases in AG levels are conceived to be derived from starch breakdown, although further investigation is needed to answer whether the starch degradation pathway via alpha-1,4-glucan lyase/AF reductase exists in plant tissues.  相似文献   

19.
The disaccharides, O-(sodium 3-deoxy-alpha- and -beta-D-manno-2-octulopyranosylonate)-(2----8)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate, were prepared via glycosylation of methyl (allyl 4,5,7-tri-O-acetyl-3-deoxy-alpha-D-manno-2-octulopyranosid)onat e with methyl (4,5,7,8-tetra-O-acetyl-3-deoxy-D-manno-2-octulopyranosyl bromide)onate under Helferich and Koenigs-Knorr conditions, respectively. Based on g.l.c.-m.s. data of the alpha- and beta-(2----8)-linked disaccharide derivatives, obtained after carbonyl- and carboxyl-group reduction, followed by methylation, the alpha-anomeric configuration was assigned to the terminal KDO-residue in the KDO-region of Chlamydial lipopolysaccharide. The trisaccharide O-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----8)-(sodium 3-deoxy-alpha-D-manno-2-octulopyranosylonate)-(2----4)-sodium (allyl 3-deoxy-alpha-D-manno-2-octulopyranosid)onate was obtained via block synthesis using an alpha-(2----8)-linked disaccharide bromide derivative as the glycosyl donor. Copolymerization of the allyl glycosides with acrylamide gave water-soluble macromolecular antigens, suitable for defining epitope specificities of monoclonal antibodies directed against Chlamydial LPS.  相似文献   

20.
Virulence of Vibrio vulnificus has been strongly associated with encapsulation and an opaque colony morphology. Capsular polysaccharide was purified from a whole-cell, phosphate-buffered saline-extracted preparation of the opaque, virulent phase of V. vulnificus M06-24 (M06-24/O) by dialysis, centrifugation, enzymatic digestion, and phenol-chloroform extraction. Nuclear magnetic resonance spectroscopic analysis of the purified polysaccharide showed that the polymer was composed of a repeating structure with four sugar residues per repeating subunit: three residues of 2-acetamido-2,6-dideoxyhexopyranose in the alpha-gluco configuration (QuiNAc) and an additional residue of 2-acetamido hexouronate in the alpha-galactopyranose configuration (GalNAcA). The complete carbohydrate structure of the polysaccharide was determined by heteronuclear nuclear magnetic resonance spectroscopy and by high-performance anion-exchange chromatography. The 1H and 13C nuclear magnetic resonance spectra were completely assigned, and vicinal coupling relationships were used to establish the stereochemistry of each sugar residue, its anomeric configuration, and the positions of the glycosidic linkages. The complete structure is: [----3) QuipNAc alpha-(1----3)-GalpNAcA alpha-(1----3)-QuipNAc alpha-(1----]n QuipNAc alpha-(1----4)-increases The polysaccharide was produced by a translucent phase variant of M06-24 (M06-24/T) but not by a translucent, acapsular transposon mutant (CVD752). Antibodies to the polysaccharide were demonstrable in serum from rabbits inoculated with M06-24/O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号