首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The viral protein HBx is the key regulatory factor of the hepatitis B virus (HBV) and the main etiology for HBV-associated liver diseases, such as cirrhosis and hepatocellular carcinoma. Historically, HBx has defied biochemical and structural characterization, deterring efforts to understand its molecular mechanisms. Here we show that soluble HBx fused to solubility tags copurifies with either a [2Fe-2S] or a [4Fe-4S] cluster, a feature that is shared among five HBV genotypes. We show that the O2-stable [2Fe-2S] cluster form converts to an O2-sensitive [4Fe-4S] state when reacted with chemical reductants, a transformation that is best described by a reductive coupling mechanism reminiscent of Fe-S cluster scaffold proteins. In addition, the Fe-S cluster conversions are partially reversible in successive reduction–oxidation cycles, with cluster loss mainly occurring during (re)oxidation. The considerably negative reduction potential of the [4Fe-4S]2+/1+ couple (−520 mV) suggests that electron transfer may not be likely in the cell. Collectively, our findings identify HBx as an Fe-S protein with striking similarities to Fe-S scaffold proteins both in cluster type and reductive transformation. An Fe-S cluster in HBx offers new insights into its previously unknown molecular properties and sets the stage for deciphering the roles of HBx-associated iron (mis)regulation and reactive oxygen species in the context of liver tumorigenesis.  相似文献   

2.
3.
We have demonstrated previously that the core protein of hepatitis C virus (HCV) exhibits suppression activity on gene expression and replication of hepatitis B virus (HBV). Here we further elucidated the suppression mechanism of HCV core protein. We demonstrated that HCV core protein retained the inhibitory effect on HBV gene expression and replication when expressed as part of the full length of HCV polyprotein. Based on the substitution mutational analysis, our results suggested that mutation introduced into the bipartite nuclear localization signal of the HCV core protein resulted in the cytoplasmic localization of core protein but did not affect its suppression ability on HBV gene expression. Mutational studies also indicated that almost all dibasic residue mutations within the N-terminal 101-amino acid segment of the HCV core protein (except Arg(39)-Arg(40)) impaired the suppression activity on HBV replication but not HBV gene expression. The integrity of Arg residues at positions 101, 113, 114, and 115 was found to be essential for both suppressive effects, whereas the Arg residue at position 104 was important only in the suppression of HBV gene expression. Moreover, our results indicated that the suppression on HBV gene expression was mediated through the direct interaction of HCV core protein with the trans-activator HBx protein, whereas the suppression of HBV replication involved the complex formation between HBV polymerase (pol) and the HCV core protein, resulting in the structural incompetence for the HBV pol to bind the package signal and consequently abolished the formation of the HBV virion. Altogether, this study suggests that these two suppression effects on HBV elicited by the HCV core protein likely depend on different structural context but not on nuclear localization of the core protein, and the two effects can be decoupled as revealed by its differential targets (HBx or HBV pol) on these two processes of the HBV life cycle.  相似文献   

4.
5.
Khattar E  Mukherji A  Kumar V 《The FEBS journal》2012,279(7):1220-1230
Hepatitis B virus X protein (HBx) is a putative viral oncoprotein that plays an important role in various cellular processes, including modulation of the phosphatidylinositol 3-kinase/Akt signalling pathway. However, the molecular mechanism of Akt activation remains elusive. Here we show that HBx interacts with Akt1 kinase and is phosphorylated at serine 31 as indicated by mutational analysis of the Akt recognition motif (creating the HBxS31A mutant) or immunoblotting of HBx immunoprecipitates using Akt motif-specific antibody. The Akt-dependent phosphorylation of HBx was abrogated in the presence of the phosphatidylinositol 3-kinase inhibitor LY294002 or Akt1 gene silencing by specific siRNA. Co-immunoprecipitation studies provided evidence for HBx-Akt interaction in a cellular environment. This interaction was also confirmed in hepatoma HepG2.2.15 cells in which HBx was expressed at physiological levels from the integrated hepatitis B viral genome. The HBx-Akt interaction was essential for Akt signalling, and involved displacement of the Akt-bound negative regulator 'C-terminal modulator protein' by HBx. HBx-activated Akt phosphorylated its downstream target glycogen synthase kinase 3β, leading to stabilization of β-catenin, while p65 phosphorylation resulted in enhanced promoter recruitment and expression of target genes encoding cyclin D1 and Bcl-XL. Further, the oncogenic potential of HBx was significantly augmented in the presence of Akt in a soft agar colony formation assay. Together, these results suggest that oncogenic co-operation between HBx and Akt may be important for cell proliferation, abrogation of apoptosis and tumorigenic transformation of cells.  相似文献   

6.
Huh KW  Siddiqui A 《Mitochondrion》2002,1(4):349-359
Chronic infection with hepatitis B virus (HBV) is strongly associated with the development of hepatocellular carcinoma (HCC). HBx, a protein encoded by HBV is believed to contribute to the development of HCC. HBx was recently shown to associate with mitochondria. In this study, we mapped region(s) of HBx necessary for mitochondrial targeting and showed that a putative transmembrane region (aa 54-70) is required for mitochondrial association. In addition, amino acids in the putative alpha helical regions (aa 75-88 and aa 109-131) seem to aid in the mitochondrial targeting of this protein. We further show that the majority of HBx localizes to the outer mitochondrial membrane based on its sensitivity to trypsin and resistance to alkaline treatment. These studies suggest that the association of HBx with the outer mitochondrial membrane is its intrinsic property. These characterizations define transmembrane and alpha-helical regions of this viral protein as domains of mitochondrial targeting. These studies are further useful in the investigations concerning the physiological significance of the HBx's association with mitochondria and its impact on liver disease pathogenesis.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
We have sought to address the problem of the host and tissue specificity of the hepatitis B virus (HBV) by using transgenic mice obtained after injection of head-to-tail dimers of the HBV genome. Viral DNA replication and protein synthesis were obtained in one of nine transgenic mice containing integrated HBV DNA. The RNAs encoding the HBV surface antigen and the core antigen were synthesized in the liver, the kidney, and the heart. In these organs, DNA replicative intermediates similar to those found during normal infection were associated with corelike structures. Large amounts of core polypeptides and capsids were detected in the nuclei in the absence of any pathological effect. These results show that the different steps of HBV multiplication can take place in nonliver nonhuman cells once the problem of entry into the host cell is overcome. In the absence of a small laboratory animal infectable by HBV, such transgenic mice should be helpful for the study of many aspects of viral multiplication.  相似文献   

20.
X Zhang  X You  N Li  W Zhang  S Gagos  Q Wang  A Banos  N Cai  H Zhang  H Zhang  X Zhang  C Shan  L Qiu  S Zhang  N Lv  M Chen  Y Du  J Xia  L Ye  X Zhang 《FEBS letters》2012,586(19):3215-3221
The significance of hepatitis B virus (HBV) DNA-based integration in hepatocarcinogenesis is poorly understood. In the present study, we investigated whether the integration of HBV X gene (HBx) is involved in the event. Our finding showed that the integration of HBx fragment (316-462 bp/262-462 bp) was able to transform human immortalized normal liver LO2 cells using a cell model of HBx-integration. We identified that the recombination, HBx/Alu core sequence/subtelomeric DNA, was required for the transformation, which could be detected in 5 out of 44 clinical HBx-positive hepatocellular carcinoma tissues. Thus, we conclude that HBx integration is involved in the hepatocarcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号