首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vascular cambium produces secondary xylem and phloem in plants and is responsible for wood formation in forest trees. In this study we used a microscale mass-spectrometry technique coupled with cryosectioning to visualize the radial concentration gradient of endogenous indole-3-acetic acid (IAA) across the cambial meristem and the differentiating derivatives in Scots pine (Pinus sylvestris L.) trees that had different rates of cambial growth. This approach allowed us to investigate the relationship between growth rate and the concentration of endogenous IAA in the dividing cells. We also tested the hypothesis that IAA is a positional signal in xylem development (C. Uggla, T. Moritz, G. Sandberg, B. Sundberg [1996] Proc Natl Acad Sci USA 93: 9282–9286). This idea postulates that the width of the radial concentration gradient of IAA regulates the radial number of dividing cells in the cambial meristem, which is an important component for determining cambial growth rate. The relationship between IAA concentration in the dividing cells and growth rate was poor, although the highest IAA concentration was observed in the fastest-growing cambia. The radial width of the IAA concentration gradient showed a strong correlation with cambial growth rate. The results indicate that IAA gives positional information in plants.  相似文献   

2.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

3.
Both the physiological and the pathological morphogenetic processes that we can meet in embryogenesis, neogenesis and degenerative dysgenesis present common features: they are ruled by three different kinds of mechanisms, one related to cell migration, the second to cell differentiation and the third to cell proliferation. We deal here with an application to the cambial growth which essentially involves the third type of mechanism. Woody plants produce secondary tissue (secondary xylem and phloem) from a meristematic tissue called vascular cambium, responsible for the radial growth of a tree. This paper focuses on the formation of secondary xylem, considered in two dimensions in a cross-section framework. A new discrete modelling approach is used, based on the cellular scale, in order to attain a more accurate understanding of how the elementary microscopic behaviour of each cell takes part in the macroscopic morphogenesis. The mathematical model essentially uses an occurrence method simulating the main features of radial growth with simple geometric rules, such as Thom's division rule (Thom,1972)to account for the cell proliferation. The study applies to concrete instances in which the changes made in the geometrical cellular patterns of the vascular cambium clearly affect the shape of the tree, as in Pinus radiata (D. Don.).  相似文献   

4.
Sundberg B  Little CH  Cui K 《Plant physiology》1990,93(4):1295-1302
Free and conjugated indole-3-acetic acid (IAA) were measured by quantitative gas chromatography-selected ion monitoringmass spectrometry in the extraxylary region of the stem of large Pinus sylvestris (L.) trees during the annual cycle of cambial activity and dormancy. The extraxylary region at the stem top and bottom was divided into 3 and 4 fractions, respectively, for the free IAA measurements, while the entire extraxylary region was extracted when the IAA-conjugates were analyzed. The effect on the distribution pattern of expressing IAA level as a concentration (per gram fresh weight or dry weight) and as total amount (per square centimeter) was examined. The IAA level was much higher in the cambial region than in the fractions that contained the nonfunctional phloem and the periderm. The largest IAA concentration occurred in the fraction that included the cambium, whereas the total amount of IAA was greatest in the phloemcontaining fraction. The significance of the nonuniform radial distribution of IAA for estimating the IAA concentration in the cambial region is discussed in relation to how the cambial region is sampled. A slight Iongitudinal gradient in IAA concentration, decreasing from the top to the bottom of the stem, was observed in the cambial region when the cambium was in the grand period of activity, but not at the end of the cambial growing period. In all fractions, the total amount of IAA was highest when the cambium was active. However, the IAA concentration in the cambial region did not follow the same pattern, actually being lowest during the tracheid production period at the stem bottom. IAA conjugates were detected on all sampling dates except June 23, but their concentrations were always less than 14% of that of free IAA, and their occurrence did not obviously vary during the year. In general, there was a higher concentration of ester conjugates than of amide conjugates, and the ester conjugates were more abundant at the top of the stem than at the bottom.  相似文献   

5.
To manipulate the occurrence of latewood formation and cambial dormancy in Picea abies (L.) Karst. stems, potted seedlings were transferred from the natural environment on 9 July, when tracheids early in the transition between earlywood and latewood were being produced, and cultured for up to 5 weeks in a controlled environment chamber having: (1) Warm LD, (25/15C during day/night) and long (16 h) photoperiod, (2) Warm SD, (25/15C) and short (8 h) photoperiod, or (3) Cold SD, (18/8°C) and short (8 h) photoperiod. In Warm LD trees, the radial enlargement of primary-walled derivatives on the xylem side of the cambium, as well as xylem production, continued at the same magnitude throughout the experiment. In Warm SD and Cold SD trees, the radial enlargement of primary-walled derivatives declined and the cambium entered dormancy, both developments occurring faster in the Warm SD trees. The concentrations of indole-3-acetic acid (IAA) was higher in developing xylem tissue than in cambium+phloem tissues, but did not vary with environmental treatment or decrease during the experimental period. The O2 concentration in the cambial region followed the order of Cold SD>Warm SD>Warm LD trees and was <5%, the threshold for the inhibition of IAA-induced proton secretion, for the first 3 weeks in Warm SD and Warm LD trees. Thus, neither latewood formation nor cambial dormancy can be attributed to decreased IAA in the cambial region. Nor does lower O2 concentration in the cambial region appear to be inhibiting the IAA action that is associated with cambial growth.  相似文献   

6.
The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.  相似文献   

7.

Background and Aims

During their lifetime, tree stems take a series of successive nested shapes. Individual tree growth models traditionally focus on apical growth and architecture. However, cambial growth, which is distributed over a surface layer wrapping the whole organism, equally contributes to plant form and function. This study aims at providing a framework to simulate how organism shape evolves as a result of a secondary growth process that occurs at the cellular scale.

Methods

The development of the vascular cambium is modelled as an expanding surface using the level set method. The surface consists of multiple compartments following distinct expansion rules. Growth behaviour can be formulated as a mathematical function of surface state variables and independent variables to describe biological processes.

Key Results

The model was coupled to an architectural model and to a forest stand model to simulate cambium dynamics and wood formation at the scale of the organism. The model is able to simulate competition between cambia, surface irregularities and local features. Predicting the shapes associated with arbitrarily complex growth functions does not add complexity to the numerical method itself.

Conclusions

Despite their slenderness, it is sometimes useful to conceive of trees as expanding surfaces. The proposed mathematical framework provides a way to integrate through time and space the biological and physical mechanisms underlying cambium activity. It can be used either to test growth hypotheses or to generate detailed maps of wood internal structure.  相似文献   

8.
Isolated stem segments of Pinus silvestris L. produce new xylem in sterile culture for 5 weeks if sucrose and IAA are present in the medium. The response of cambium varies in the course of the season and along the tree stem. The cambium is more sensitive in spring and in the stem portion closer to tree apex than later in the season and closer to the stem base. Spring initiation of cambial activity in adult pine trees under natural conditions could not be correlated with any consistent concentration gradient of natural auxin extracted from the cambial region. Thus, the relation between concentration of auxin and the activity of cambium is complex and involves changes of cambial responsivity. Interaction with gibberellic acid or kinetin and changing concentration of sucrose were studied during the season, but none of these substances alone appeared to be responsible for the observed variation in cambial response to auxin.  相似文献   

9.
Changes in protein synthesis in cambial region cells were monitored in 1-year-old cuttings of Scots pine ( Pinus sylvestris L.) collected in November, when the cambium was dormant, and subjected to environmental conditions that promoted or inhibited cambial growth. The proteins were labelled in vivo with L-[35S]-methionine and separated using 2-dimensional polyacrylamide gel electrophoresis. In budded cuttings cultured under environmental conditions favoring cambial reactivation, there was a reproducible quantitative change in 55 proteins (33 induced and 22 repressed), a less certain increase or decrease in 40 proteins, and no apparent change in about 150 proteins. Under the same conditions, 8 proteins were induced and 6 others were repressed in debudded cuttings treated apically with 1 mg indole-3-acetic acid (IAA) in 1 g lanolin, in which cambial reactivation occurred, compared with debudded cuttings treated with plain lanolin in which the cambium did not reactivate. Three of the proteins induced in the IAA-reated cuttings only appeared after cambial cell division and derivative differentiation actually began, and the same proteins were found in budded cuttings after their cambium had become reactivated. In contrast, protein expression in cuttings exposed to environmental conditions that prevented cambial reactivation was similar at the beginning and end of the experimental period. These results indicate that the cambium was in the quiescence stage of dormancy at the start of the experiment, that quiescent cambial region cells can synthesize proteins as soon as exposed to environmental conditions favoring reactivation, and that only 3 of the approximately 250 proteins detected were specifically involved in cambial growth  相似文献   

10.

Key message

Cambial marking experiment and cambial activity analysis offer strong evidence on existence of annual growth rings in Heritiera fomes and revealing the potential of dendrochronological applications in Bangladesh mangroves.

Abstract

Despite enormous significance in coastal protection, biodiversity conservation and livelihood support to the local communities, mangrove ecosystems have been continuously degrading mainly due to anthropogenic disturbances and climate change. Time series based on dated tree ring is an option to identify the causes of forest dilapidation. In this study, we investigated the structure and periodicity of the growth ring in Heritiera fomes, the flagship tree species of the Bangladesh Sundarbans, combining cambial marking experiment and cambial activity analysis. Distinct growth rings were found which are delineated by a band of marginal parenchyma, predominantly one cell wide but up to three and occasionally interrupted with fiber. Of the 13 trees with cambium marking experiment, one growth ring was found in each tree during a year. The dormant cambium was characterized by the abrupt boundary between xylem and cambial zone, absence of enlarging or differentiating cambial derivatives, lower number of cambial cells and thicker radial walls in cambial cells. Growth ring anomalies, i.e., wedging and partially missing rings were also found. In most of the cases, the lower part of the eccentric discs had low radial increment (<0.75 mm) and therefore the growth ring in that area merged with previous one and produced wedging or partially missing ring. However, the existence of annual rings suggests its great potential for future dendrochronological applications to reveal the dynamics of vegetation and climate in Sundarbans.
  相似文献   

11.
Root-knot nematodes, Meloidogyne incognita, induced lumps of callus tissue on the cambial surfaces of peeled tobacco stem segments cultured in vitro. Except for a layer 1 to 3 cells thick, callus was limited to the basal ends of control segments. Indole-3-acetic acid (IAA) applied in agar blocks to the centers of stem segments, when it had any effect on the cambial surface, induced streaks of callus extending from the blocks toward the basal ends of the segments. IAA in agar blocks also increased callus growth at the basal ends of the segments, increased the growth of pith on the undersides of the segments, promoted root initiation, but inhibited bud initiation. Nematodes produced none of these effects, nor did they change the type of organs induced by various concentrations of IAA in the medium. Callus tissue did grow on the cambial surface of stem segments surrounding agar blocks containing 2,3,5-triiodobenzoic acid, an inhibitor of polar auxin transport. Paraffin sections showed that the nematodes were confined to the callus tissue on the cambial surfaces of the segments. Except for occasional syncytia and areas of cell division, nematode-induced callus was composed of thin-walled, irregularly shaped cells arising from the cambium. Differences between the responses of tobacco stem segments to root-knot nematodes and IAA-agar blocks indicate that auxins were not freed from the plant tissue nor secreted by the nematodes. Instead, it is suggested that nematodes enabled the tissue to retain and use endogenous auxins that otherwise would have been transported to the basal ends of the segments.  相似文献   

12.
Gravistimulation of tree stems affects wood development by unilaterally inducing wood with modified properties, called reaction wood. Commonly, it also stimulates cambial growth on the reaction wood side. Numerous experiments involving applications of indole-3-acetic acid (IAA) or IAA-transport inhibitors have suggested that reaction wood is induced by a redistribution of IAA around the stem. However, in planta proof for this model is lacking. Therefore, we have mapped endogenous IAA distribution across the cambial region tissues in both aspen (Populus tremula, denoted poplar) and Scots pine (Pinus sylvestris) trees forming reaction wood, using tangential cryosectioning combined with sensitive gas chromatography-mass spectrometry analysis. Moreover, we have documented the kinetics of IAA during reaction wood induction in these species. Our analysis of endogenous IAA demonstrates that reaction wood is formed without any obvious alterations in IAA balance. This is in contrast to gravitropic responses in roots and shoots where a redistribution of IAA has been documented. It is also of interest that cambial growth on the tension wood side was stimulated without an increase in IAA. Taken together, our results suggest a role for signals other than IAA in the reaction wood response, or that the gravitational stimulus interacts with the IAA signal transduction pathway.  相似文献   

13.
DIGBY  J.; WAREING  P. F. 《Annals of botany》1966,30(3):539-548
When indole-3-acetic acid (IAA) is applied to woody shoots cambialdivision is stimulated and the cambial derivatives differentiateto produce xylem tissue. When gibberellic acid (GA) is applied,cambial division occurs but the resultant derivatives on thexylem side of the cambium remain undifferentiated. The relativelevels of applied IAA and GA are important in determining whethermainly xylem or phloem tissue is produced. High IAA/low GA concentrationsfavour xylem formation, whereas low IAA/high GA concentrationsfavour phloem production. The new phloem tissue produced asa result of hormone treatment is fully differentiated, containingsieve elements and sieve plates. IAA is important in promotingthe elongation of the cambial derivatives to produce xylem vesseland fibre elements, though in the case of xylem fibres appliedGA causes further elongation. IAA is an important factor indetermining vessel diameter in the ring-porous species Robiniapseudacacia, high levels of applied IAA giving wide springwood-typevessels and low levels giving narrow ‘summerwood’vessels.  相似文献   

14.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

15.
Indole-3-acetic acid (IAA) levels in the cambial region were measured by radioimmunoassay during the annual cambial activity - rest - quiescence transition at the crown top (current-year shoots) and at the middle and base of the stem of two 21-year-old Abies balsamea (L.) Mill. trees about 7.5 m in height. The IAA level declined throughout the experimental period (July 24 - December 3) at all positions in both trees. The earlywood - latewood transition, which occurred throughout each tree about the end of July, was associated in time with the largest decrease in the absolute amount of IAA. Tracheid production ceased towards the end of September, the cessation occurring earlier at the top of the tree than at the base. The cessation of tracheid production was only poorly correlated in time and space with the decline in IAA level, and it was not prevented by exogenous IAA. The results suggest that IAA level is involved in the control of tracheid radial enlargement, but not in the regulation of the cessation of tracheid production.  相似文献   

16.
The level of indole-3-acetic acid (IAA) was locally modified in cambial tissues of transgenic aspen (Populus tremula L. x Populus tremuloides Michx.). We also demonstrate the use of a linked reporter gene to visualize the expression of the iaa genes. The rate-limiting bacterial IAA-biosynthetic gene iaaM and the reporter gene for beta-glucuronidase (GUS), uidA, were each fused to the cambial-region-specific Agrobacterium rhizogenes rolC promoter and linked on the same T-DNA. In situ hybridization of the iaaM gene confirmed that histochemical analysis of GUS activity could be used to predict iaaM gene expression. Moreover, quantitative fluorometric analysis of GUS activity allowed estimation of the level of de novo production of IAA in transgenic lines carrying a single-copy insert of the iaaM, uidA T-DNA. Microscale analysis of the IAA concentration across the cambial region tissues showed an increase in IAA concentration of about 35% to 40% in the two transgenic lines, but no changes in the radial distribution pattern of IAA compared with wild-type plants. This increase did not result in any changes in the developmental pattern of cambial derivatives or the cambial growth rate, which emphasizes the importance of the radial distribution pattern of IAA in controlling the development of secondary xylem, and suggests that a moderate increase in IAA concentration does not necessarily stimulate growth.  相似文献   

17.
The relationship between from hardiness and growth potential, and their dependence on temperature and photoperiod, was investigated in the one-year-old cambium of balsam fir [Abies balsamea (L.) Mill.]. Six-year-old trees were exposed for 9 weeks to either the natural environment or one of 4 controlled environments in the fall (18 September-18 November), spring (12 April–14 June) and summer (19 July – 19 September). The 4 controlled environments were (1) WS, warm temperature (24/20°C in day/night) + short day (8 h). (2) WL. warm temperature (24/20°C) + long day (8 h + 1 h night break), (3) CS. cold temperature (9/5°C) + short day (8 h) and (4) CL, cold temperature (9/5°C) + long day (8 h + 1 h night break). At the beginning and end of each exposure, cambial activity was measured by recording the number of xylem, cambium and phloem cells, frost hardiness was estimated from the cambium's ability to survive freezing to –40°C, and cambial growth potential was deduced from the duration of the cell cycle and the production of xylem, cambium and phloem cells in cuttings cultured for 4 weeks with exogenous indole-3-acetic acid (IAA) under environmental conditions favourable for cambial activity. In the natural environment, frost hardening began in September and was completed in November, while dehardening occurred when the cambium reactivated. CL, CS, and to a lesser extent WS, promoted hardening in the summer and fall, but did not prevent dehardening in the spring. The cambial growth potential in the natural environment declined from a maximum in April to a low level in June, reached a minimum in September, then increased to a high level in November. This potential was promoted by CL and CS on all dates by WL in the summer and fall. The ratio of xylem to phloem induced by IAA treatment was greatest in June and least in September in cuttings from trees exposed to the natural environment, and was increased by CL and CS in the fall. The cambium in intact branches of trees protected from chilling during the fall and winter resumed cell cycling after less than 9 weeks of dormancy, but produced mostly or only phloem in the subsequent growing period. It is concluded that the frost hardiness of the cambium, the IAA-induced cycling of cambial cells, and IAA-induced xylem to phloem ratio vary independently with season, temperature and photoperiod, and that the periodicity of these processes is regulated endogenously.  相似文献   

18.
In contrast to common belief, recent studies have confirmed that intrusive growth of fusiform cambial initials has a significant role in the rearrangement of the initials, but does not contribute to the cambial circumference increment. We observed a rapid rearrangement of cambial initials on a long series of transverse sections of the vascular cambium and the wood of a 50-year-old pine (Pinus sylvestris L.) tree. A comparison of cell arrangement in consecutive sections, as well as a critical analysis of tangential reconstructions, has confirmed that changes in cell locations in a group of cells on the tangential surface caused no change in the total tangential width of the whole group. Models illustrating changes in locations of the initials have been proposed, assuming that intrusive growth, which makes the growing initials intrude between the neighbouring initials and their immediate derivatives, is localized on the longitudinal edges of cells. We infer that intrusive growth of the cambial initials in P. sylvestris is not involved in the cambial circumference increment, but plays a significant role in the rearrangement of the initials, probably allowing for a relaxation of shearing strains generated during radial growth. The relationship of intrusive growth with the elimination of initials has been discussed with reference to the frequency of anticlinal divisions. It has been proposed that the occurrence of anticlinal divisions in excess over the actual requirement for increase in the cambial circumference could be due to internal shearing strains.  相似文献   

19.
Seasonal measurements of IAA,3 made using GC-MS, 4 indicatedthat in Q. robur the spring initiation of cambial activity andonset of visible bud outgrowth in the canopy is preceded byan increase in cambial region IAA. The effects of notch-girdlescut into the bole indicated that IAA in the cambial region laterwas present in separate physiological pools, with only the polar-transportedfraction affecting epicormic bud outgrowth. The stage in thespring when the epicormic buds grew out coincided with an increaseboth in cambial region IAA and in the capacity of cambial explantsfor IAA polar transport. Thus the stimulus needed by the epicormicbuds to overcome inhibition by polar-transported IAA appearedto be self-generated. The observed effects of exogenous hormoneson epicormic bud outgrowth from stem explants indicated thatthis stimulus might be cytokinin. The seasonal changes detectedin cambial region ABA3 were consistent with a role for stress-inducedABA in the induction of epicormic bud dormancy after canopydevelopment during the summer. No consistent effects of standthinning on cambial region IAA, ABA, water potentials or watercontents were detected, although polar transport of exogenousIAA by cambial region explants removed in the spring was reducedby thinning. Key words: Epicormic buds, cambium, hormones  相似文献   

20.
Ficus infectoria stem cuttings were treated with 10 and 100 μg/ml each of IAA, IBA, 2,4, -D and NAA at monthly intervals and planted to study their rooting response after recording morphophysiological status and cambial activty of the parent branches. Attempts were also made to surgically expose the cambium before auxin treatment to determine the relationship of seasonal variation in auxin effectivity to cambial activity. The results show that: (1) there are two distinct phases in the sensitivity of Ficus infectoria stem cuttings to auxin-induced rooting; (2) the high rooting phase coincides with renovation of growth and high cambial activity starting in March and lasting through August and the low rooting phase coincides with winter dormancy and low cambial activity; (3) roots emerge in longitudinal rows in slitted auxin-treated cuttings; (4) slitted auxin-treated cuttings root profusely in June when cambial activity is high but not in October when cambial activity is low suggesting a close correspondence of seasonal variation between the rooting activity of auxin and cambial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号