首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Sources of resistance to several potyviruses have been identified and characterized within the cucumber (Cucumis sativus L.) germplasm. Resistance to zucchini yellow mosaic virus (ZYMV) is present in inbred lines derived from the Dutch hybrid Dina (Dina-1) and from the Chinese cultivar ‘Taichung Mou Gua’ (TMG-1). Tests of allelism indicated that the genes for resistance to ZYMV in TMG-1 and Dina-1 are at the same locus; however, the two genotypes exhibited different phenotypes in response to cotyledon inoculation with ZYMV. Dina-1 exhibited a distinct veinal chlorosis and accumulation of virus limited to the first and/or second true leaves, while TMG-1 remained symptom-free and did not accumulate virus. The distinct veinal chlorosis phenotype in Dina-1 was dominant to the symptom-free phenotype in TMG-1 and was shown not to be due to a separate gene. These results indicate that a series of alleles differing in effectiveness and dominance relationships occurs at the zym locus such that Zym>zym Dina>zym TMG-1. In addition to ZYMV resistance, TMG-1 is also resistant to watermelon mosaic virus (WMV), the watermelon strain of papaya ringspot virus (PRSV-W) and the Moroccan watermelon mosaic virus (MWMV); the WMV and MWMV resistances are at the same locus, or tightly linked to the zym locus. Dina-1 also was found to be resistant to PRSV-W and MWMV. The gene for MWMV resistance in Dina-1 appeared to be at the same locus or tightly linked (<1% recombination) to the gene for ZYMV resistance. In contrast to the response to ZYMV inoculation, Dina-1 does not exhibit distinct veinal chlorosis when inoculated with PRSV-W or MWMV. Collectively, these observations suggest that the gene(s) conferring resistance to ZYMV, WMV, and MWMV may be part of a gene cluster for potyvirus resistance in cucumber. Received: 12 November 1996 / Accepted: 25 April 1997  相似文献   

2.
The inbred cucumber (Cucumis sativus L.) line TMG-1 is resistant to three potyviruses:zucchini yellow mosaic virus (ZYMV), watermelon mosaic virus (WMV), and the watermelon strain of papaya ringspot virus (PRSV-W). The genetics of resistance to WMV and the relationship of WMV resistance to ZYMV resistance were examined. TMG-1 was crossed with WI-2757, a susceptible inbred line. F1, F2 and backcross progeny populations were screened for resistance to WMV and/or ZYMV. Two independently assorting factors conferred resistance to WMV. One resistance was conferred by a single recessive gene from TMG-1 (wmv-2). The second resistance was conferred by an epistatic interaction between a second recessive gene from TMG-1 (wmv-3) and either a dominant gene from WI-2757 (Wmv-4) or a third recessive gene from TMG-1 (wmv-4) located 20–30 cM from wmv-3. The two resistances exhibited tissue-specific expression. Resistance conferred by wmv-2 was expressed in the cotyledons and throughout the plant. Resistance conferred by wmv-3 + Wmv-4 (or wmv-4) was expressed only in true leaves. The gene conferring resistance to ZYMV appeared to be the same as, or tightly linked to one of the WMV resistance genes, wmv-3.  相似文献   

3.
4.
We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris Black Turtle Soup 1. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.  相似文献   

5.
Y H Park  S Sensoy  C Wye  R Antonise  J Peleman  M J Havey 《Génome》2000,43(6):1003-1010
The watermelon strain of papaya ringspot virus (PRSV-W) and zucchini yellow mosaic virus (ZYMV) are potyviruses that cause significant disease losses in cucumber. Resistances have been identified primarily in exotic germplasm that require transfer to elite cultivated backgrounds. To select more efficiently for virus resistances, we identified molecular markers tightly linked to PRSV-W and ZYMV resistances in cucumber. We generated F6 recombinant inbred lines (RILs) from a cross between Cucumis sativus L. 'Straight 8' and a line from 'Taichung Mou Gua', TMG1 (susceptible and resistant, respectively, to both viruses), and studied the segregations of amplified fragment length polymorphism (AFLP) markers, randomly amplified polymorphic DNAs (RAPDs), restriction fragment length polymorphisms (RFLPs), and resistances to PRSV-W and ZYMV. A 353-point map of cucumber was generated, delineating 12 linkage groups at LOD 3.5. Linkage arrangements among RFLPs were consistent with previously published maps; however linkages among RAPDs in our map did not agree with a previously published map. Resistances to PRSV-W and ZYMV were tightly linked (2.2 cM) and mapped to the end of one linkage group. One AFLP cosegregated with resistance to ZYMV.  相似文献   

6.
Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar ‘New Hampshire Midget’ (‘NHM’) showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F2 and 114 BC1R progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F2 and BC1R populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.  相似文献   

7.
A survey of papaya and 10 cucurbitaceous vegetables (ashgourd, zucchini, watermelon, cucumber, pumpkin, bottlegourd, snakegourd, spongegourd, bittergourd and choyote) during 1989 and from 1992 to 1994 in more than 68 locations (both experimental plots and farmers' fields) covering 18 terai and inner-terai districts of Nepal, indicated that these crops were heavily affected with various virus-like symptoms. The most commonly observed symptoms were severe mosaic, leaf distortion, oily streaks or spots on papaya; leaf distortion, blisters and shoe stringing on zucchini; and mosaic or yellow mosaic, blisters, and leaf distortion on other cucurbits. Average incidence of plants with symptoms ranged from 75% to 100% on papaya; 85% to 100% on zucchini; 4% to 100% on cucumber; 4% to 100% on pumpkin and 10–100% on bottlegourd, choyote and watermelon. The virus isolated from papaya and zucchini was confirmed as papaya ringspot potyvirus — watermelon strain (PRSV-W). It was also detected in survey samples from ashgourd, bittergourd, snakegourd, spongegourd, zucchini, watermelon, bottlegourd and cucumber. Leaf extracts of some cucumber, choyote, pumpkin, zucchini and snakegourd samples reacted with cucumber mosaic cucumovirus (CMV) and zucchini yellow mosaic potyvirus (ZYMV) antisera. Leaf extracts of ashgourd, cucumber and pumpkin reacted with antibodies against cucurbit aphid-borne yellow luteovirus (CABW). No samples reacted with antiserum to watermelon mosaic-2 potyvirus (WMV-2) or squash mosaic potyvirus (SqMV). Some papaya and most cucurbits leaf samples cross-reacted with antibodies against Moroccan (Mor) and Algerian (Alg) isolates of WMV. The Nepalese PRSV isolate was related to but distinct from a PRSV-W type strain from France. This is the first report on the identity of ZYMV and CABW in Nepal.  相似文献   

8.
9.
10.
11.
Incidence of Viruses Infecting Cucurbits in Cyprus   总被引:1,自引:0,他引:1  
  相似文献   

12.
Abstract

A number of viruses are known to infect chrysanthemum plants, however in the present study a previously unknown potyvirus was detected using techniques such as ELISA, RT-PCR and hybridization. The ELISA-positive samples were amplified using a potyvirus group-specific primer which gave an amplification of ~850 bp. The amplified product was cloned and sequenced, and shows 72 – 73% homology with known potyviruses that infect chrysanthemums such as Potato virus Y potyvirus, Soyabean mosaic virus and Turnip mosaic potyvirus when compared to the sequence available in the database. However, present potyvirus isolates show 93% homology with Chilli veinal mottle virus and Pepper vein banding virus. The results were further confirmed by Northern hybridization. This is the first report of a potyvirus similar to Chilli veinal mottle virus, and Pepper vein banding virus infecting chrysanthemums.  相似文献   

13.
The present work describes the identification and characterization of a potyvirus isolated from siratro (Macroptilium atropurpureum Urb.) in the north‐west region of the State of São Paulo, Brazil. The virus was transmitted by mechanical inoculation. Its host range was restricted mainly to members of the Fabaceae. A cDNA fragment of about 930 bp was amplified by RT/PCR, cloned and sequenced. The fragment, which included the coat protein gene, had amino acid identity percentages between 88 and 98% with isolates of Bean common mosaic virus (BCMV). Phylogenetic analysis grouped the siratro potyvirus and BCMV isolates in 99% of the replicates, including Azuki mosaic virus, Dendrobium mosaic virus, Blackeye cowpea mosaic virus and Peanut stripe virus, which have been classified as BCMV strains. This is the first citation on the presence of BCMV in siratro plants in Brazil.  相似文献   

14.
Zucchini yellow mosaic virus (ZYMV) routinely causes significant losses in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). ZYMV resistances from the cucumber population TMG1 and the melon plant introduction (PI) 414723 show different modes of inheritance and their genetic relationships are unknown. We used molecular markers tightly linked to ZYMV resistances from cucumber and melon for comparative mapping. A 5-kb genomic region (YCZ-5) cosegregating with the zym locus of cucumber was cloned and sequenced to reveal single nucleotide polymorphisms and indels distinguishing alleles from ZYMV-resistant (TMG1) and susceptible (Straight 8) cucumbers. A low-copy region of the YCZ-5 clone was hybridized to bacterial artificial chromosome (BAC) clones of melon and a 180-kb contig assembled. One end of this melon contig was mapped in cucumber and cosegregated with ZYMV resistance, demonstrating that physically linked regions in melon show genetic linkage in cucumber. However the YCZ-5 region segregated independently of ZYMV resistance loci in two melon families. These results establish that these sources of ZYMV resistances from cucumber TMG1 and melon PI414723 are likely non-syntenic.  相似文献   

15.
16.
The dominant gene Pvr7 from Capsicum chinense Jacq. ’PI159236’ confers resistance to the pepper mottle potyvirus (PepMoV) Florida (V1182) strain. This gene is tightly linked to the dominant potyvirus resistance gene Pvr4 with observed recombination frequencies of 0.012 to 0.016. A cleaved amplified polymorphic sequence (CAPS) marker linked to Pvr4 was used to localize Pvr4 and, by extension, Pvr7, to linkage group 10 on an interspecific map of pepper. Our results indicated that Pvr4, Pvr7, and Tsw, a gene conferring resistance to tomato spotted wilt virus, comprise the first identified cluster of dominant disease resistance genes in Capsicum L. This position does not correspond to the locations of dominant potyvirus resistance genes in potato or to the positions of any other mapped solanaceous resistance genes or resistance gene homologues. Received: 20 September 1999 / Accepted: 21 March 2000  相似文献   

17.
18.
Viral diseases that could cause important economic losses often affect cucurbits, but only limited information on the incidence and spatial distribution of specific viruses is currently available. During the 2005 and 2006 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo), squash and pumpkin (Cucurbita pepo), watermelon (Citrullus lanatus) and cucumber (Cucumis sativus) crops of the Spanish Community of Valencia (eastern Spain), where several counties have a long standing tradition of cucurbit cultivation and production. Surveyed fields were chosen with no previous information as to their sanitation status, and samples were taken from plants that showed virus‐like symptoms. Samples were analysed using molecular hybridisation to detect Beet pseudo‐yellows virus (BPYV), Cucurbit aphid‐borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ring spot virus (PRSV), Watermelon mosaic virus (WMV) and Zucchini yellow mosaic virus (ZYMV). We collected 1767 samples from 122 independent field plots; out of these, approximately 94% of the samples were infected by at least one of these viruses. Percentages for the more frequently detected viruses were 35.8%, 27.0%, 16.5% and 7.2% for CABYV, WMV, PRSV and ZYMV, respectively, and significant deviations were found on the frequency distributions based on either the area or the host sampled. The number of multiple infections was high (average 36%), particularly for squash (more than 57%), with the most frequent combination being WMV + PRSV (12%) followed by WMV + CABYV (10%). Sequencing of WMV complementary DNA suggested that ‘emerging’ isolates have replaced the ‘classic’ ones, as described in southern regions of France, leading us to believe that cucurbit cultivation could be severely affected by these new, emerging isolates.  相似文献   

19.
Monogenically-inherited resistance to Soil-borne cereal mosaic virus (SBCMV) in hexaploid bread wheat cultivars ‘Tremie’ and ‘Claire’ was mapped on chromosome 5D. The two closest flanking markers identified in the Claire-derived mapping population, Xgwm469-5D and E37M49, are linked to the resistance locus at distances of 1 and 9 cm, respectively. Xgwm469-5D co-segregated with the SBCMV resistance in the Tremie-derived population and with the recently identified Sbm1 locus in the cv. Cadenza. This suggested that Tremie and Claire carry a resistance gene allelic to Sbm1, or one closely linked to it. The diagnostic value of Xgwm469-5D was assessed using a collection of SBCMV resistant and susceptible cultivars. Importantly, all susceptible genotypes carried a null allele of Xgwm469-5D, whereas resistant genotypes presumably related to either Claire and Tremie or Cadenza revealed a 152 or 154 bp allele of Xgwm469-5D, respectively. Therefore, Xgwm469-5D is well suited for marker assisted selection for SBCMV resistance.  相似文献   

20.
Cantaloupe line CZW-30 containing coat protein gene constructs of cucumber mosaic cucumovirus (CMV), zucchini yellow mosaic potyvirus (ZYMV), and watermelon mosaic virus 2 potyvirus (WMV-2) was investigated in the field over two consecutive years for resistance to infections by CMV, ZYMV, and/or WMV-2. Resistance was evaluated under high disease pressure achieved by mechanical inoculations and/or natural challenge inoculations by indigenous aphid vectors. Across five different trials, homozygous plants were highly resistant in that they never developed systemic symptoms as did the nontransformed plants but showed few symptomatic leaves confined close to the vine tips. Hemizygous plants exhibited a significant delay (2–3 weeks) in the onset of disease compared to control plants but had systemic symptoms 9–10 weeks after transplanting to the field. Importantly, ELISA data revealed that transgenic plants reduced the incidence of mixed infections. Only 8% of the homozygous and 33% of the hemizygous plants were infected by two or three viruses while 99% of the nontransformed plants were mixed infected. This performance is of epidemiological significance. In addition, control plants were severely stunted (44% reduction in shoot length) and had poor fruit yield (62% loss) compared to transgenic plants, and most of their fruits (60%) were unmarketable. Remarkably, hemizygous plants yielded 7.4 times more marketable fruits than control plants, thus suggesting a potential commercial performance. This is the first report on extensive field trials designed to assess the resistance to mixed infection by CMV, ZYMV, and WMV-2, and to evaluate the yield of commercial quality cantaloupes that are genetically engineered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号