首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Longitudinal data analysis for discrete and continuous outcomes   总被引:170,自引:0,他引:170  
S L Zeger  K Y Liang 《Biometrics》1986,42(1):121-130
Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One objective of statistical analysis is to describe the marginal expectation of the outcome variable as a function of the covariates while accounting for the correlation among the repeated observations for a given subject. This paper proposes a unifying approach to such analysis for a variety of discrete and continuous outcomes. A class of generalized estimating equations (GEEs) for the regression parameters is proposed. The equations are extensions of those used in quasi-likelihood (Wedderburn, 1974, Biometrika 61, 439-447) methods. The GEEs have solutions which are consistent and asymptotically Gaussian even when the time dependence is misspecified as we often expect. A consistent variance estimate is presented. We illustrate the use of the GEE approach with longitudinal data from a study of the effect of mothers' stress on children's morbidity.  相似文献   

5.
In the clinical practice, many diseases such as glioblastoma, leukemia, diabetes, and prostates have multiple subtypes. Classifying subtypes accurately using genomic data will provide individualized treatments to target-specific disease subtypes. However, it is often difficult to obtain satisfactory classification accuracy using only one type of data, because the subtypes of a disease can exhibit similar patterns in one data type. Fortunately, multiple types of genomic data are often available due to the rapid development of genomic techniques. This raises the question on whether the classification performance can significantly be improved by combining multiple types of genomic data. In this article, we classified four subtypes of glioblastoma multiforme (GBM) with multiple types of genome-wide data (e.g., mRNA and miRNA expression) from The Cancer Genome Atlas (TCGA) project. We proposed a multi-class compressed sensing-based detector (MCSD) for this study. The MCSD was trained with data from TCGA and then applied to subtype GBM patients using an independent testing data. We performed the classification on the same patient subjects with three data types, i.e., miRNA expression data, mRNA (or gene expression) data, and their combinations. The classification accuracy is 69.1% with the miRNA expression data, 52.7% with mRNA expression data, and 90.9% with the combination of both mRNA and miRNA expression data. In addition, some biomarkers identified by the integrated approaches have been confirmed with results from the published literatures. These results indicate that the combined analysis can significantly improve the accuracy of classifying GBM subtypes and identify potential biomarkers for disease diagnosis.  相似文献   

6.
Gene expression data analysis   总被引:2,自引:0,他引:2  
Microarrays are one of the latest breakthroughs in experimental molecular biology, which allow monitoring of gene expression for tens of thousands of genes in parallel and are already producing huge amounts of valuable data. Analysis and handling of such data is becoming one of the major bottlenecks in the utilization of the technology. The raw microarray data are images, which have to be transformed into gene expression matrices, tables where rows represent genes, columns represent various samples such as tissues or experimental conditions, and numbers in each cell characterize the expression level of the particular gene in the particular sample. These matrices have to be analyzed further if any knowledge about the underlying biological processes is to be extracted. In this paper we concentrate on discussing bioinformatics methods used for such analysis. We briefly discuss supervised and unsupervised data analysis and its applications, such as predicting gene function classes and cancer classification as well as some possible future directions.  相似文献   

7.
Gene expression data analysis   总被引:33,自引:0,他引:33  
Brazma A  Vilo J 《FEBS letters》2000,480(1):17-24
Microarrays are one of the latest breakthroughs in experimental molecular biology, which allow monitoring of gene expression for tens of thousands of genes in parallel and are already producing huge amounts of valuable data. Analysis and handling of such data is becoming one of the major bottlenecks in the utilization of the technology. The raw microarray data are images, which have to be transformed into gene expression matrices--tables where rows represent genes, columns represent various samples such as tissues or experimental conditions, and numbers in each cell characterize the expression level of the particular gene in the particular sample. These matrices have to be analyzed further, if any knowledge about the underlying biological processes is to be extracted. In this paper we concentrate on discussing bioinformatics methods used for such analysis. We briefly discuss supervised and unsupervised data analysis and its applications, such as predicting gene function classes and cancer classification. Then we discuss how the gene expression matrix can be used to predict putative regulatory signals in the genome sequences. In conclusion we discuss some possible future directions.  相似文献   

8.
Ji X  Li-Ling J  Sun Z 《FEBS letters》2003,542(1-3):125-131
In this work we have developed a new framework for microarray gene expression data analysis. This framework is based on hidden Markov models. We have benchmarked the performance of this probability model-based clustering algorithm on several gene expression datasets for which external evaluation criteria were available. The results showed that this approach could produce clusters of quality comparable to two prevalent clustering algorithms, but with the major advantage of determining the number of clusters. We have also applied this algorithm to analyze published data of yeast cell cycle gene expression and found it able to successfully dig out biologically meaningful gene groups. In addition, this algorithm can also find correlation between different functional groups and distinguish between function genes and regulation genes, which is helpful to construct a network describing particular biological associations. Currently, this method is limited to time series data. Supplementary materials are available at http://www.bioinfo.tsinghua.edu.cn/~rich/hmmgep_supp/.  相似文献   

9.
We propose a new method for tumor classification from gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are modeled by independent component analysis (ICA). Secondly, the most discriminant eigenassays extracted by ICA are selected by the sequential floating forward selection technique. Finally, support vector machine is used to classify the modeling data. To show the validity of the proposed method, we applied it to classify three DNA microarray datasets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.  相似文献   

10.
Biclustering extends the traditional clustering techniques by attempting to find (all) subgroups of genes with similar expression patterns under to-be-identified subsets of experimental conditions when applied to gene expression data. Still the real power of this clustering strategy is yet to be fully realized due to the lack of effective and efficient algorithms for reliably solving the general biclustering problem. We report a QUalitative BIClustering algorithm (QUBIC) that can solve the biclustering problem in a more general form, compared to existing algorithms, through employing a combination of qualitative (or semi-quantitative) measures of gene expression data and a combinatorial optimization technique. One key unique feature of the QUBIC algorithm is that it can identify all statistically significant biclusters including biclusters with the so-called ‘scaling patterns’, a problem considered to be rather challenging; another key unique feature is that the algorithm solves such general biclustering problems very efficiently, capable of solving biclustering problems with tens of thousands of genes under up to thousands of conditions in a few minutes of the CPU time on a desktop computer. We have demonstrated a considerably improved biclustering performance by our algorithm compared to the existing algorithms on various benchmark sets and data sets of our own. QUBIC was written in ANSI C and tested using GCC (version 4.1.2) on Linux. Its source code is available at: http://csbl.bmb.uga.edu/∼maqin/bicluster. A server version of QUBIC is also available upon request.  相似文献   

11.
Li X  Rao S  Wang Y  Gong B 《Nucleic acids research》2004,32(9):2685-2694
Current applications of microarrays focus on precise classification or discovery of biological types, for example tumor versus normal phenotypes in cancer research. Several challenging scientific tasks in the post-genomic epoch, like hunting for the genes underlying complex diseases from genome-wide gene expression profiles and thereby building the corresponding gene networks, are largely overlooked because of the lack of an efficient analysis approach. We have thus developed an innovative ensemble decision approach, which can efficiently perform multiple gene mining tasks. An application of this approach to analyze two publicly available data sets (colon data and leukemia data) identified 20 highly significant colon cancer genes and 23 highly significant molecular signatures for refining the acute leukemia phenotype, most of which have been verified either by biological experiments or by alternative analysis approaches. Furthermore, the globally optimal gene subsets identified by the novel approach have so far achieved the highest accuracy for classification of colon cancer tissue types. Establishment of this analysis strategy has offered the promise of advancing microarray technology as a means of deciphering the involved genetic complexities of complex diseases.  相似文献   

12.
13.
14.
Cheng and Church algorithm is an important approach in biclustering algorithms. In this paper, the process of the extended space in the second stage of Cheng and Church algorithm is improved and the selections of two important parameters are discussed. The results of the improved algorithm used in the gene expression spectrum analysis show that, compared with Cheng and Church algorithm, the quality of clustering results is enhanced obviously, the mining expression models are better, and the data possess a strong consistency with fluctuation on the condition while the computational time does not increase significantly.  相似文献   

15.
16.
17.
Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression.  相似文献   

18.
Machine learning techniques offer a viable approach to cluster discovery from microarray data, which involves identifying and classifying biologically relevant groups in genes and conditions. It has been recognized that genes (whether or not they belong to the same gene group) may be co-expressed via a variety of pathways. Therefore, they can be adequately described by a diversity of coherence models. In fact, it is known that a gene may participate in multiple pathways that may or may not be co-active under all conditions. It is therefore biologically meaningful to simultaneously divide genes into functional groups and conditions into co-active categories--leading to the so-called biclustering analysis. For this, we have proposed a comprehensive set of coherence models to cope with various plausible regulation processes. Furthermore, a multivariate biclustering analysis based on fusion of different coherence models appears to be promising because the expression level of genes from the same group may follow more than one coherence models. The simulation studies further confirm that the proposed framework enjoys the advantage of high prediction performance.  相似文献   

19.

Background  

The DNA microarray technology allows the measurement of expression levels of thousands of genes under tens/hundreds of different conditions. In microarray data, genes with similar functions usually co-express under certain conditions only [1]. Thus, biclustering which clusters genes and conditions simultaneously is preferred over the traditional clustering technique in discovering these coherent genes. Various biclustering algorithms have been developed using different bicluster formulations. Unfortunately, many useful formulations result in NP-complete problems. In this article, we investigate an efficient method for identifying a popular type of biclusters called additive model. Furthermore, parallel coordinate (PC) plots are used for bicluster visualization and analysis.  相似文献   

20.
Optical mapping is a novel technique for generating the restriction map of a DNA molecule by observing many single, partially digested copies of it, using fluorescence microscopy. The real-life problem is complicated by numerous factors: false positive and false negative cut observations, inaccurate location measurements, unknown orientations, and faulty molecules. We present an algorithm for solving the real-life problem. The algorithm combines continuous optimization and combinatorial algorithms applied to a nonuniform discretization of the data. We present encouraging results on real experimental data and on simulated data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号