首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Pestsova  M W Ganal  M S R?der 《Génome》2000,43(4):689-697
The potential of Aegilops tauschii, the diploid progenitor of the D genome of wheat, as a source of microsatellite markers for hexaploid bread wheat was investigated. By screening lambda phage and plasmid libraries of Ae. tauschii genomic DNA, dinucleotide microsatellites containing GA and GT motifs were isolated and a total of 65 functional microsatellite markers were developed. All primer pairs that were functional in Ae. tauschii amplified well in hexaploid wheat. Fifty-five loci amplified by 48 primer sets were placed onto a genetic framework map of the reference population of the International Triticeae Mapping Initiative (ITMI) 'Opata 85' x 'W7984'. The majority of microsatellite markers could be assigned to the chromosomes of the D genome of wheat. The distribution of the markers along the chromosomes is random. Chromosomal location of 22 loci nonpolymorphic in the reference population was determined using nullitetrasomic lines of Triticum aestivum 'Chinese Spring'. The results of this study demonstrate the value of microsatellite markers isolated from Ae. tauschii for the study of bread wheat. The microsatellite markers developed improve the existing wheat microsatellite map and can be used in a wide range of genetic studies and breeding programs.  相似文献   

2.
Hexaploid wheat (Triticum aestivum L em Thell) is derived from a complex hybridization procedure involving three diploid species carrying the A, B and D genomes, respectively. We recently isolated microsatellites from a T. tauschii library enriched for various motifs and evaluated the transferability of these markers to several diploid species carrying the A, B or D genomes. All of the primer pairs amplifying more than one locus on bread wheat and half of those giving D-genome-specific loci gave an amplification product on A-and/or B-diploid species. All of the markers giving a single amplification product for T. tauschii and no amplification on the other diploid species were D-genome-specific at the hexaploid level. The non-specific microsatellite markers (which gave an amplification product on diploid species carrying the A, B or D genome) gave either a complex amplification pattern on bread wheat (with several bands) or generated a single band which mapped to the D genome. Southern blot hybridizations with probes corresponding to the microsatellite flanking regions gave a signal on all diploid and hexaploid species, whatever the specificity of the microsatellite. The patterns observed on bread wheat were generally in accordance with those observed for diploid species, with slight rearrangements. This suggests that the specificity of microsatellite markers is probably due to mutations in microsatellite flanking regions rather than sequence elimination during polyploidization events and that genome stringency is higher at the polyploid than at the diploid level.  相似文献   

3.
Isolation and Characterization of Microsatellites in Snap Bean   总被引:1,自引:0,他引:1  
The objectives of this study were to isolate and characterize microsatellites from a heat tolerant variety of snap bean (Phaseolus vulgaris L.) in order to generate polymorphic genetic markers linked to quantitative trait loci for heat tolerance. A genomic library contained 400-800 bp inserts was constructed and screened for the presence of (GA/CT)n and (CA/GT)n repeats. The proportion of positive clones yielded estimated of 3.72×10 4 such dinucleotide repeats per genome, roughly comparable to the abundance reported in other eukaryotic genomes. Twenty-six positive clones were sequenced. In contrast to mammalian genomes, the (GA/CT)n motif was much more abundant than the (CA/GT)n motif in these clones. The (GA/CT)n repeats also showed longer average repeat length (mean n=10.4 versus 6.5), suggesting that they are better candidates for yielding polymorphic genetic markers in the snap bean genome.  相似文献   

4.
Abundance, variability and chromosomal location of microsatellites in wheat   总被引:51,自引:0,他引:51  
The potential of microsatellite sequences as genetic markers in hexaploid wheat (Triticum aestivum) was investigated with respect to their abundance, variability, chromosomal location and usefulness in related species. By screening a lambda phage library, the total number of (GA)n blocks was estimated to be 3.6 x 104 and the number of (GT)n blocks to be 2.3 x 104 per haploid wheat genome. This results in an average distance of approximately 270 kb between these two microsatellite types combined. Based on sequence analysis data from 70 isolated microsatellites, it was found that wheat microsatellites are relatively long containing up to 40 dinucleotide repeats. Of the tested primer pairs, 36% resulted in fragments with a size corresponding to the expected length of the sequenced microsatellite clone. The variability of 15 microsatellite markers was investigated on 18 wheat accessions. Significantly, more variation was detected with the microsatellite markers than with RFLP markers with, on average, 4.6 different alleles per microsatellite. The 15 PCR-amplified microsatellites were further localized on chromosome arms using cytogenetic stocks of Chinese Spring. Finally, the primers for the 15 wheat microsatellites were used for PCR amplification with rye (Secale cereale) and barley accessions (Hordeum vulgare, H. spontaneum). Amplified fragments were observed for ten primer pairs with barley DNA and for nine primer pairs with rye DNA as template. A microsatellite was found by dot blot analysis in the PCR products of barley and rye DNA for only one primer pair.  相似文献   

5.
The abundance of different simple sequence motifs in plants was accessed through data base searches of DNA sequences and quantitative hybridization with synthetic dinucleotide repeats. Database searches indicated that microsatellites are five times less abundant in the genomes of plants than in mammals. The most common plant repeat motif was AA/TT followed by AT/TA and CT/GA. This group comprised about 75% of all microsatellites with a length of more than 6 repeats. The GT/CA motif being the most abundant dinucleotide repeat in mammals was found to be considerably less frequent in plants. To address the question if plant simple repeat sequences are variable as in mammals, (GT)n and (CT)n microsatellites were isolated from B.napus. Five loci were investigated by PCR-analysis and amplified products were obtained for all microsatellites from B. oleracea, B.napus and B.rapa DNA, but only for one primer pair from B.nigra. Polymorphism was detected for all microsatellites.  相似文献   

6.
Microsatellites have proved to be very useful as genetic markers, as they seem to be ubiquitous and randomly distributed throughout most eukaryote genomes. However, our laboratories and others have determined that this paradigm does not necessarily apply to the yellow fever mosquito Aedes aegypti. We report the isolation and identification of microsatellite sequences from multiple genomic libraries for A. aegypti. We identified 6 single-copy simple microsatellites from 3 plasmid libraries enriched for (GA)(n), (AAT)(n), and (TAGA)(n) motifs from A. aegypti. In addition, we identified 5 single-copy microsatellites from an A. aegypti cosmid library. Genetic map positions were determined for 8 microsatellite loci. These markers greatly increase the number of microsatellite markers available for A. aegypti and provide additional tools for studying genetic variability of mosquito populations. Additionally, most A. aegypti microsatellites are closely associated with repetitive elements that likely accounts for the limited success in developing an extensive panel of microsatellite marker loci.  相似文献   

7.
T Areshchenkova  M W Ganal 《Génome》1999,42(3):536-544
Microsatellites as genetic markers are used in many crop plants. Major criteria for their usability as molecular markers include that they are highly polymorphic and evenly spread throughout a genome. In tomato, it has been reported that long arrays of tetranucleotide microsatellites containing the motif GATA are highly clustered around the centromeres of all chromosomes. In this study, we have isolated tomato microsatellites containing long arrays (> 20 repeats) of the dinucleotide motifs GA, GT, AT, as well as GATA, assessed their variability within Lycopersicon esculentum varieties and mapped them onto a genetic map of tomato. The investigated microsatellite markers exhibited between 1 and 5 alleles in a diverse set of L. esculentum lines. Mapping of the microsatellites onto the genetic map of tomato demonstrates that, as previously shown, GATA microsatellites are highly clustered in the regions of the tomato centromeres. Interestingly, the same centromeric location was now found for long dinucleotide microsatellite markers. Because of this uneven distribution, genetic mapping of the entire tomato genome using long dinucleotide microsatellites will be very difficult to achieve and microsatellite markers with shorter arrays of microsatellites could be more suitable for mapping experiments albeit their lower level of polymorphism. Some microsatellite markers described in this study might provide a useful tool to study the molecular structure of tomato centromeric regions and for variety identification.  相似文献   

8.
Paucity of polymorphic molecular markers in chickpea (Cicer arietinum L.) has been a major limitation in the improvement of this important legume. Hence, in an attempt to develop sequence-tagged microsatellite sites (STMS) markers from chickpea, a microsatellite enriched library from the C. arietinum cv. Pusa362 nuclear genome was constructed for the identification of (CA/GT) n and (CT/GA) n microsatellite motifs. A total of 92 new microsatellites were identified, of which 74 functional STMS primer pairs were developed. These markers were validated using 9 chickpea and one C. reticulatum accession. Of the STMS markers developed, 25 polymorphic markers were used to analyze the intraspecific genetic diversity within 36 geographically diverse chickpea accessions. The 25 primer pairs amplified single loci producing a minimum of 2 and maximum of 11 alleles. A total of 159 alleles were detected with an average of 6.4 alleles per locus. The observed and expected heterozygosity values averaged 0.32 (0.08–0.91) and 0.74 (0.23–0.89) respectively. The UPGMA based dendrogram was able to distinguish all the accessions except two accessions from Afghanistan establishing that microsatellites could successfully detect intraspecific genetic diversity in chickpea. Further, cloning and sequencing of size variant alleles at two microsatellite loci revealed that the variable numbers of AG repeats in different alleles were the major source of polymorphism. Point mutations were found to occur both within and immediately upstream of the long tracts of perfect repeats, thereby bringing about a conversion of perfect motifs into imperfect or compound motifs. Such events possibly occurred in order to limit the expansion of microsatellites and also lead to the birth of new microsatellites. The microsatellite markers developed in this study will be useful for genetic diversity analysis, linkage map construction as well as for depicting intraspecific microsatellite evolution.  相似文献   

9.
Twenty four chloroplast microsatellite loci having more than ten mononucleotide repeats were identified from the entire chloroplast DNA sequence of common wheat, Triticum aestivum cv Chinese Spring. For each microsatellite, a pair of primers were designed to produce specific PCR products in the range of 100– 200 bp. The allelic diversity at the microsatellite loci was evaluated using 43 accessions from 11 Triticum and Aegilops species involved in wheat polyploid evolution. Polymorphic banding patterns were obtained at 21 out of 24 chloroplast microsatellite loci. The three monomorphic microsatellites were found to be located in coding regions. For the polymorphic microsatellites, the number of alleles per microsatellite ranged from 2 to 7 with an average of 4.33, and the diversity values (H) ranged from 0.05 to 0.72 with an average of 0.47. Significant correlations (P<0.01) were observed between the number of repeats and the number of alleles, and between the number of repeats and diversity value, respectively. The genetic diversity explained by chloroplast microsatellites and nuclear RFLP markers were compared using 22 tetraploid accessions. Although the number of alleles for nuclear RFLP markers was found to be higher than that for chloroplast microsatellites, similar diversity values were observed for both types of markers. Among common wheat and its ancestral species, the percentages of common chloroplast microsatellite alleles were calculated to examine their phylogenetic relationships. As a result, Timopheevi wheat species were clearly distinguished from other species, and Emmer and common wheat species were divided into two main groups, each consisting of a series of wild and cultivated species from tetraploid to hexaploid. This indicates that the two types of chloroplast genomes of common wheat might have independently originated from the corresponding types of wild and cultivated Emmer wheat species. Received: 6 October 2000 / Accepted: 13 March 2001  相似文献   

10.
We have used microsatellite sequences to evaluate the influence of the mismatch repair system on mutation bias in D. melanogaster. While mismatch-proficient cells have the highest mutation rate at (GT)(n) repeats, (AT)(n) repeats were the least stable ones in spel1(-/-) flies lacking functional mismatch repair. Furthermore, the mutation spectrum of long microsatellite alleles in spel1(-/-) was slightly upward biased, resulting in a gain of repeats, whereas wild-type flies have a strong downward bias. Interestingly, this mismatch repair-mediated downward mutation bias is reflected in the genome composition of D. melanogaster. When compared to other species, D. melanogaster has significantly shorter microsatellites. Our results suggest that the mismatch repair system may have an important role in shaping genome composition.  相似文献   

11.
 Ninety-four newly developed microsatellite markers were integrated into existing RFLP framework maps of four rice populations, including two doubled haploid, a recombinant inbred, and an interspecific backcross population. These simple sequence repeats (SSR) were predominantly poly(GA) motifs, targetted because of their abundance in rice. They were isolated from a previously described sheared library and a newly constructed enzyme-digested library. Differences in the average length of poly(GA) tracts were observed for clones isolated from the two libraries. The length of GA motifs averaged 21 repeat units for clones isolated from the Tsp-509-digested library, while motifs averaged 17 units for clones from the sheared library. There was no evidence of clustering of microsatellite markers near centromeres or telomeres. Mapping of the 94 newly developed markers as well as of 27 previously reported microsatellites provided genome-wide coverage of the 12 chromosomes, with an average distance of 1 SSLP (simple sequence repeat polymorphism) per 16–20 cM. Received: 13 February 1997/Accepted: 28 February 1997  相似文献   

12.
A cosmid library made from brown-headed cowbird (Molothrus ater) DNA was examined for representation of 17 distinct microsatellite motifs including all possible mono-, di-, and trinucleotide microsatellites, and the tetranucleotide repeat (GATA)n. The overall density of microsatellites within cowbird DNA was found to be one repeat per 89 kb and the frequency of the most abundant motif, (AGC)n, was once every 382 kb. The abundance of microsatellites within the cowbird genome is estimated to be reduced approximately 15-fold compared to humans. The reduced frequency of microsatellites seen in this study is consistent with previous observations indicating reduced numbers of microsatellites and other interspersed repeats in avian DNA. In addition to providing new information concerning the abundance of microsatellites within an avian genome, these results provide useful insights for selecting cloning strategies that might be used in the development of locus-specific microsatellite markers for avian studies.  相似文献   

13.
Development of simple sequence repeat markers in rye (Secale cereale L.).   总被引:6,自引:0,他引:6  
B Saal  G Wricke 《Génome》1999,42(5):964-972
Simple sequence repeats (SSRs), also referred to as microsatellites, represent a PCR-based marker system that has been described in mammalian and plant genomes in recent years. In self-pollinating crop plants they have been shown to be superior to other DNA markers with respect to their level of polymorphism. The technical advantages compared with RFLP markers should also facilitate marker analysis in outcrossing crops like rye. In order to determine the usefulness of SSR markers in rye genetics and breeding, several genomic libraries were screened for (CT/GA)n and (GT/CA)n dinucleotide repeats. It was estimated that these motifs occur at a frequency of one per 268-519 kb. Seventy four out of 182 positive clones were sequenced, and the majority (56.8%) revealed perfect repeats, predominantly of the type (GT/CA)n (61.9%). Fifty seven primer pairs were designed and 27 (47.4%) resulted in specific SSR markers, of which 20 were genetically mapped or assigned to chromosomes or chromosome arms, respectively. The level of polymorphism of four SSR and three RFLP markers was assessed in two open-pollinated rye cultivars. On average, the SSR markers showed larger values of expected heterozygosity (0.62 vs. 0.43) and allele number (5.9 vs. 3.4) than RFLP markers in both cultivars.  相似文献   

14.
Isolation and characterisation of microsatellites from hexaploid bread wheat   总被引:16,自引:0,他引:16  
 The development of large panels of simple-to-analyse genetic markers for tagging agronomically important genes and diversity studies in hexaploid bread wheat is an important goal in applied cereal genetic research. We have isolated and sequenced over 200 clones containing microsatellites from the wheat genome and have tested 153 primer pairs for genetic polymorphism using a panel of ten wheat varieties, including the parents of our main mapping cross. A subset comprising 49 primer pairs detects 76 loci, of which 74 can be unequivocably allocated to one of the wheat chromosomes. A relatively low frequency of the loci detected are from the D genome, and these loci show less polymorphism than those from the A and B genomes. Generally, the microsatellites show high levels of genetic polymorphism and an average of 3.5 alleles per locus with an average polymorphism information content (PIC), value of 0.51. The observed levels of polymorphism are positively correlated with the length of the microsatellite repeats. A high proportion, approximately two-thirds, of primer pairs designed to detect simple sequence repeat (SSR) variation in wheat do not generate the expected amplification products and, more significantly, often generate unresolvable PCR products. In general, our results agree closely with those obtained from other recent studies using microsatellites in plants. Received: 19 March 1996 / Accepted: 28 June 1996  相似文献   

15.
The abundance and inherent potential for extensive allelic variations in simple sequence repeats (SSRs) or microsatellites resulted in valuable source for genetic markers in eukaryotes. In this study, we analyzed and compared the abundance and organisation of SSR in the genome of two important fungal pathogens of wheat, brown or leaf rust (Puccinia triticina) and black or stem rust (Puccinia graminis f. sp. tritici). P. triticina genome with two fold genome size as compared to P. graminis tritici has lower relative abundance and SSR density. The distribution pattern of different SSR motifs provides the evidence of greater accumulation of dinucleotide followed by trinucleotide repeats. More than two-hundred different types of repeat motifs were observed in the genomes. The longest SSR motifs varied in both genomes and some of the repeat motifs are found in higher frequency. The information about survey of relative abundance, relative density, length and frequency of different repeat motifs in Puccinia sp. will be useful for developing SSR markers that could find several applications in analysis of fungal genome such as genetic diversity, population genetics, race identification and acquisition of new virulence.  相似文献   

16.
Microsatellites or simple sequence repeats (SSRs) are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW) genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR); 70,564 (23.9%) were found to be monomorphic and 224,703 (76.1%) were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3%) amplified one locus, 8 (17.8%) amplified multiple identical loci, and 13 (28.9%) did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising source to increase the number of genetic markers available for the wheat genome. The results of this study will be useful for investigating the genetic diversity and evolution among wheat and related species. At the same time, the results will facilitate comparative genomic studies and marker-assisted breeding (MAS) in plants.  相似文献   

17.
牙鲆CA/GT微卫星标记的筛选   总被引:5,自引:0,他引:5  
采用生物素选择杂交法与放射性同位素杂交法相结合的技术,成功地从牙鲆(Paralichthys olivaceus)基因组中分离出含有CA/GT重复类型的微卫星序列。通过两轮淘选,共获得526个阳性菌落。测序其中的119个菌落,结果获得133个含有微卫星座位的序列。除了两个复合型微卫星外(1.5%),完美型63个(47.37%),非完美型68个(51.13%)。设计并合成22对微卫星引物,对8个人工雌核发育家系的亲本进行遗传背景分析。PCR结果表明,4对引物无扩增带或者扩增带不是目的条带,1对引物表现为单态,其余17对引物均呈多态性,平均每个座位产生5.2个复等位基因,杂合度为0.375~0.846,多态信息含量为0.305~0.823。结果表明,所筛选的大部分微卫星标记能够用于牙鲆群体遗传学研究。  相似文献   

18.
Simple sequence repeats (SSRs) are valuable molecular markers in many plant species. In common wheat (Triticum aestivum L.), which is characteristic of its large genomes and alloploidy, SSRs are one of the most useful markers. To increase SSR marker sources and construct an SSR-based linkage map of appropriate density, we tried to develop new SSR markers from SSR-enriched genomic libraries and the public database. SSRs having (GA)n and (GT)n motifs were isolated from enriched libraries, and di- and tri-nucleotide repeats were mined from expressed sequence tags (ESTs) and DNA sequences of Triticum species in the public database. Of the 1,147 primer pairs designed, 842 primers gave accurate amplification products, and 478 primers showed polymorphism among the nine wheat lines examined. Using a doubled haploid (DH) population from an intraspecific cross between Kitamoe and Münstertaler (KM), we constructed an SSR-based linkage map that consisted of 464 loci: 185 loci from genomic libraries, 65 loci from the sequence database including ESTs, 213 loci from the SSR markers already reported, and 1 locus of morphological marker. Although newly developed SSR loci were distributed throughout all chromosomes, clustering of them around putative centromeric regions was found on several chromosomes. The total length of the KM map spanned 3,441 cM and corresponded to approximately 86% genome coverage. The KM map comprised of 23 linkage groups because two gaps of over 50 cM distance remained on chromosome 6A. This is a first report of SSR-based linkage map using single intraspecific population of common wheat. This mapping result suggests that it becomes possible to construct linkage maps with sufficient genome coverage using only SSR markers without RFLP markers, even in an intraspecific population of common wheat. Moreover, the new SSR markers will contribute to the enrichment of molecular marker resources in common wheat.  相似文献   

19.
 Microsatellites are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. The potential of microsatellite markers for use in a genetic diversity study in Elymus species was evaluated. Genomic libraries of Elymus caninus were constructed. The libraries were screened with two dinucleotide, (GA)n and (GT)n, and two trinucleotide repeats, (TCT)n and (CAC)n. A total of 19 positive clones were found for the two dinucleotide repeats; no positive clone was found for the trinucleotide repeats. Positive clones were sequenced to confirm the presence of microsatellites and to generate polymerase chain reaction (PCR) primers based on the sequences flanking the microsatellite. All sequenced (GA)n clones have repeats of n>10; over half of the (GT)n microsatellites have n<10 repeats. Primer pairs were designed and evaluated for 8 selected microsatellites. PCR products were amplified from 15 Elymus caninus accessions. The number of alleles found for the eight loci varied from 1 for ECGA89 and ECGT35 to 13 for ECGA22, as determined by non-denaturing polyacrylamide electrophoresis. Six microsatellite loci were found to be polymorphic in E. caninus. The eight primer pairs were tested on three other species; seven were successful in amplifying DNA from Elymus alaskanus and E. mutabilis, and four amplified DNA from E. caucasicus. Based on these results, microsatellites appear to be useful markers in detecting variation in E. caninus. Received: 8 September 1997/Accepted: 6 October 1997  相似文献   

20.
红原鸡全基因组中微卫星分布规律研究   总被引:1,自引:0,他引:1  
本文对红原鸡Gallus gallus全基因组中微卫星数量及分布规律进行了分析,查找到l~6个碱基重复类型的微卫星序列共282728个,约占全基因组序列(1.1Gb)的0.49%,分布频率为1/3.89kb,微卫星序列的长度主要在12~70个碱基长度范围内。第1、2、3条染色体上微卫星分布频率较高,而32号染色体上无微卫星分布。不同类型微卫星中,单碱基重复类型数目最多,为184192个,占总数的65.1%;其次是四、二、三、五、六碱基重复单元序列,分别占到总数的12.8%、9.7%、7.2%、4.6%、0.8%。T、A、AT、GTTT、AAAC、G、C、ATTT、AC、GT、AAAT、ATT、AAC、AAT、GTT、AG、CT、CTTT、AAAG、GTTTT、AAACA、AAGG、CCTT是红原鸡基因组中最主要的微卫星重复类型。本研究为红原鸡微卫星标记的分离筛选、遗传多样性的研究以及不同物种微卫星的比较分析奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号