首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanistic stoichiometry of charge separation coupled to the flow of electrons through cytochrome c oxidase has remained a center of controversy since it was first demonstrated that cytochrome oxidase is an H+ pump. Currently the major dispute is whether the q+/O ratio for this segment is 4 or 6. One cause of the controversy is incomplete coupling between electron flow, electrogenic H+ ejection, and electrophoretic cation uptake, which is usually attributed to finite rates of H+ leakage and/or slippage of the H+ pumps. To minimize the uncertainty which incomplete coupling introduces into estimates of the mechanistic stoichiometry, a new approach (Beavis, A. D., and Lehninger, A. L. (1986) Eur. J. Biochem. 158, 307-314) has been used to determine the upper and lower limits of the mechanistic q+/O translocation stoichiometry of cytochrome oxidase. In this approach, the relationship between the rate of valinomycin-dependent K+ uptake, JK, and rate of O2 consumption, JO, is determined as the rates are modulated by two distinct means. When the rates are modulated by the rate of electron flow (i.e. rate of energy supply) the slope of JK versus JO must at all points be less than the mechanistic K+/O ratio. On the other hand, when the rates are modulated by varying the concentration of valinomycin (i.e. the rate of energy utilization) the slope of JK versus JO must at all points be greater than the mechanistic K+/O ratio. The results indicate that the q+/O ratio lies between 4.3 and 5.5. These data are inconsistent with both currently favored stoichiometries, and it is suggested that the true mechanistic stoichiometry of charge separation coupled to electron flow through cytochrome oxidase may be 5 q+/O.  相似文献   

2.
The transport of ATP out of mitochondria and uptake of ADP and Pi into the matrix are coupled to the uptake of one proton (Klingenberg, M., and Rottenberg, H. (1977) Eur. J. Biochem. 73, 125--130). According to the chemiosmotic hypothesis of oxidative phosphorylation this coupling of nucleotide and Pi transport to proton transport implies that the P/O ratio for the synthesis and transport of ATP to the external medium is less than the P/O ratio for the synthesis of ATP inside mitochondria. A survey of previous determinations of the P/O ratio of intact mitochondria showed little convincing evidence in support of the currently accepted values of 3 with NADH-linked substrates and 2 with succinate. We have measured P/O ratios in rat liver mitochondria by the ADP pulse method and by 32 Pi esterification, measuring oxygen uptake with an oxygen electrode, and find values close to 2 with beta-hydroxybutyrate as substrate and 1.3 with succinate as substrate in the presence of rotenone to inhibit NADH oxidation. These values were largely independent of pH, temperature, Mg2+ ion concentration, Pi concentration, ADP pulse size, or amount of mitochondria used. We suggest that these are the true values of the P/O ratio for ATP synthesis and transport by mitochondria, and that previously reported higher values resulted from errors in the determination of oxygen uptake and the use of substrates which lead to ATP synthesis by succinate thiokinase.  相似文献   

3.
The stoichiometry of vectorial H+ translocation coupled to oxidation of added ferrocytochrome c by O2 via cytochrome-c oxidase of rat liver mitoplasts was determined employing a fast-responding O2 electrode. Electron flow was initiated by addition of either ferrocytochrome c or O2. When the rates were extrapolated to level flow, the H+/O ratios in both cases were less than but closely approached 4; the directly observed H+/O ratios significantly exceeded 3.0. The mechanistic H+/O ratio was then more closely fixed by a kinetic approach that eliminates the necessity for measuring energy leaks and is independent of any particular model of the mechanism of energy transduction. From two sets of kinetic measurements, an overestimate and an underestimate and thus the upper and lower limits of the mechanistic H+/O ratio could be obtained. In the first set, the utilization of respiratory energy was systematically varied through changes in the concentrations of valinomycin or K+. From the slope of a plot of the initial rates of H+ ejection (JH) and O2 uptake (JO) obtained in such experiments, the upper limit of the H+/O ratio was in the range 4.12-4.19. In the second set of measurements, the rate of respiratory energy production was varied by inhibiting electron transport. From the slope of a plot of JH versus JO, the lower limit of the H+/O ratio, equivalent to that at level flow, was in the range 3.83-3.96. These data fix the mechanistic H+/O ratio for the cytochrome oxidase reaction of mitoplasts at 4.0, thus confirming our earlier measurements (Reynafarje, B., Alexandre, A., Davies, P., and Lehninger, A. L. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 7218-7222). Possible reasons for discrepancies in published reports on the H+/O ratio of cytochrome oxidase in various mitochondrial and reconstituted systems are discussed.  相似文献   

4.
A method is described for preparation of membrane vesicles (diameter 80nm) capable of respiration-linked ATP synthesis. Vesicles prepared from succinate-grown bacteria oxidized NADH, succinate and ascorbate plus NNN'N'-tetramethylphenylenediamine; vesicles prepared from methanol-grown bacteria also oxidized methanol and formaldehyde, but they were otherwise identical. The uncoupling agent carbonyl cyanide chlorophenylhydrazone and the adenosine triphosphatase inhibitor dicyclohexylcarbodi-imide both inhibited ATP synthesis, whereas they had no effect on the rate of respiration. Rotenone inhibited ATP synthesis and respiration with NADH as substrate; antimycin A inhibited with succinate as substrate, and cyanide inhibited with all substrates. P/O ratios were usually 0.7-1.3 with NADH, 0.6-1.0 with succinate and 0.2-0.6 with reduced NNN'N'-tetramethylphenylenediamine or methanol as respiratory substrate. When 2,6-dichlorophenol-indophenol was used as an alternative electron acceptor to O(2) (NADH as donor) the P/2e ratio was 1.65. Although these P/O ratios are minimum values, because they do not take into account unknown amounts of uncoupled O(2) consumption, they are consistent with previous proposals [O'Keeffe & Anthony (1978) Biochem, J.170, 561-567] based on measurements of proton translocation in whole cells. The results also confirm that methanol dehydrogenase and cytochromes c and a/a(3) are arranged so that the first step in methanol oxidation is coupled to synthesis of ATP.  相似文献   

5.
Isolated mitochondria from different types of muscle fibers from chickens 3 to 5 weeks were studied to evaluate the comparative oxidation of various substrates. Pectoralis (alphaW fibers), lateral adductor (betaR fibers), and medial adductor (alphaR fibers) were the muscles used. Oxygen consumption rates, RCR, and ADP/O ratios were measured to study mitochondrial function. Mitochondria from pectoralis muscle utilized pyruvate, succinate, L-glutamate, alpha-glycerophosphate, and beta-hydroxybutyrate. Mitochondria from the other two muscle types utilized all of those substrates except alpha-glycerophosphate. In each muscle type utilization of NADH was minimum and was not coupled with phosphorylation of ADP. Thus, in alphaW muscles oxidation of alpha-glycerophosphate may play an important role in transport of cytoplasmic NADH to the mitochondrial respiratory chain. In alphaR and betaR muscles "shuttle" systems other than alpha-glycerophosphate oxidation, e.g., beta-hydroxybutyrate, may perform that important role.  相似文献   

6.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

7.
绿豆线粒体呼吸链在不同电子传递途径中的电子漏   总被引:1,自引:0,他引:1  
绿豆线粒体的呼喊链在氧化不同义莪时有不同的呼吸速率和电子漏速率,但是O2^-/O2比值较稳定。呼吸链部位Ⅱ的抑制剂抗霉素A对α-酮茂二酸、琥珀酸及苹果本工物时的电子漏速率和O2^-/O2比值都明显的促进作用,说明电子漏发生的位点可能在抗纱A的抑制点之前。呼吸链在氧化外源NADH时,线料体所产生的地氰化物、鱼藤酮、抗弱A及SHAM都不敏感,而对钙离子的螯合剂EGTA显著敏感。因此,依赖于钙离子的NA  相似文献   

8.
Raymond Wootton 《FEBS letters》1984,178(2):187-192
In a recent communication Lehninger and co-workers (Costa, L.E., Reynaferje, B., and Lehninger, A.L. (1984) J. Biol. Chem. 259, 4802-4811) reported values approaching 8 for the H+/O ratio of vectorial proton ejection from rat liver mitochondria respiring with succinate. Here we present a rigorous analysis of these measurements which reveals that they may significantly overestimate the true H+/O stoicheiometry.  相似文献   

9.
The proton translocation coupled to the electron flux from succinate, exogenous NADH, and NAD+-linked substrates (malate and isocitrate) to cytochrome c and to oxygen was studied in purified potato (Solanum tuberosum) mitochondria using oxygen and ferricyanide pulse techniques. In the presence of valinomycin plus K+ (used as a charge compensating cation), optimum values of H+/2 e were obtained when low amounts of electron acceptors (oxygen or ferricyanide) were added to the mitochondria (1-2 nanogram [2 e] equivalents per milligram protein). The stoichiometry of proton translocation to electron flux was unaffected in the presence of N-ethylmaleimide, an inhibitor of the Pi/H+ symport. With succinate as substrate, H+/2 e ratios were 4.0 ± 0.2 and 3.7 ± 0.3 with oxygen and ferricyanide as electron acceptors, respectively. With exogenous NADH, H+/2e ratios were 4.1 ± 0.9 and 3.4 ± 0.2, respectively. The proton translocation coupled to the oxidation of NAD+-linked substrates (malate, isocitrate) was dependent upon the presence of adenylates (ADP, AMP, or ATP). For malate (+ glutamate) oxidation the observed H+/2 e ratios were increased from 3.6 ± 2.2 to 6.5 ± 0.5 in the presence of 20 micromolar ADP.  相似文献   

10.
In valinomycin induced stimulation of mitochondrial energy dependent reversible swelling, supported by succinate oxidation, cytochrome c (cyto-c) and sulfite oxidase (Sox) [both present in the mitochondrial intermembrane space (MIS)] are released outside. This effect can be observed at a valinomycin concentration as low as 1 nM. The rate of cytosolic NADH/cyto-c electron transport pathway is also greatly stimulated. The test on the permeability of mitochondrial outer membrane to exogenous cyto-c rules out the possibility that the increased rate of exogenous NADH oxidation could be ascribed either to extensively damaged or broken mitochondria. Accumulation of potassium inside the mitochondria, mediated by the highly specific ionophore valinomycin, promotes an increase in the volume of matrix (evidenced by swelling) and the interaction points between the two mitochondrial membranes are expected to increase. The data reported and those previously published are consistent with the view that “respiratory contact sites” are involved in the transfer of reducing equivalents from cytosol to inside the mitochondria both in the absence and the presence of valinomycin. Magnesium ions prevent at least in part the valinomycin effects. Rather than to the dissipation of membrane potential, the pro-apoptotic property of valinomycin can be ascribed to both the release of cyto-c from mitochondria to cytosol and the increased rate of cytosolic NADH coupled with an increased availability of energy in the form of glycolytic ATP, useful for the correct execution of apoptotic program.  相似文献   

11.
Paracoccus denitrificans was grown in carbon-limited aerobic continuous culture (critical dilution rate (Dc) = 0.48 h-1). The molar growth yield for carbon (succinate or malate) was constant at about 60 over a broad dilution range (growth rate) from 0.10 to 0.48 h-1. Measurements of the stoichiometry of proton translocation associated with the oxidation of endogenous substrates yielded a ratio of protons ejected from the cell per atom of oxygen consumed(leads to H+:O) of 8.55 which decreased to 5.85 in the presence of piericidin A (PA), a specific inhibitor of NADH dehydrogenase (EC 1.6.99.3). With starved cells, the observed leads to H+:O associated with the oxidation of added succinate in the presence of PA was 5.61. These observed leads to H:O's represent an underestimation since no correction was made for proton backflow during the short interval of respiratory activity. Aerobic growth of Pc. denitrificans in the chemostat becomes sulphate limited at entering concentrations of sulphate less than 300 is microM. Neither the maximum specific growth rate (measured at Dc) nor the observed molar growth yield for succinate decreased under sulphate limitation. The NADH oxidase in electron transport particles prepared from sulphate-limited cells was completely inhibited by PA. The stoichiometry of proton translocation associated with malate oxidation was similarly unaffected by sulphate limitation. It is concluded that (a) the respiratory chain of aerobic, heterotrophically grown Pc. denitrificans possesses three sites of energy conservation, including site III, (b) the number of protons ejected during the transfer of one pair of reducing equivalents along a region of the electron transport chain equivalent to a single energy-coupling site is 3, and (c) that sulphate limitation does not lead to a loss of proton translocation associated with the cytochrome-independent region of the respiratory chain.  相似文献   

12.
1. The redox state of the NAD couple of rat liver mitochondria, as measured by the [beta-hydroxybutyrate]/[acetoacetate] ratio, rapidly changed in the direction of oxidation during the preparation of homogenates in a saline medium. The value of the [beta-hydroxybutyrate]/[acetoacetate] ratio fell from 2.3 to 0.15 in 10min. EDTA diminished the fall and succinate prevented it. 2. The redox state of the rat liver cytoplasm, as measured by the [lactate]/[pyruvate] ratio, changed slightly in the direction of reduction during the preparation of homogenate. This was prevented by succinate. 3. In unsupplemented homogenates the differences in the redox states of mitochondria and cytoplasm decreased. Succinate and EDTA together maintained the differences within the physiological range. A measure of the ability of the mitochondria to maintain different redox states in mitochondria and cytoplasm is the value of the expression [lactate][acetoacetate]/[pyruvate][beta-hydroxybutyrate]. If there are no differences in the redox states of the NAD in the two cell compartments the value of the expression is 444 at 37 degrees . The value in the intact rat liver is between 4.7 and 21. 4. alpha-Oxoglutarate or glutamate were still more effective than succinate in maintaining high [beta-hydroxybutyrate]/[acetoacetate] ratios in the homogenates because these substrates supply a reducing agent of NAD(+) and, through succinate, an inhibitor of the oxidation of NADH. 5. When supplemented with alpha-oxoglutarate and EDTA, homogenates readily adjust the redox state of the beta-hydroxybutyrate dehydrogenase system after it has been upset by the addition of either acetoacetate or beta-hydroxybutyrate. 6. Amytal and rotenone raised the value of the [beta-hydroxybutyrate]/[acetoacetate] ratio. This is taken to indicate that the reduction of acetoacetate in the homogenates was not an energy-linked process. 7. 2,4-Dinitrophenol shifted the [beta-hydroxybutyrate]/[acetoacetate] ratio in the presence of succinate in favour of oxidation because it inhibited the oxidation of succinate and accelerated the oxidation of NADH. 8. Rotenone increased the rate of ketone-body formation of liver homogenates, though it decreased the rate of oxygen uptake.  相似文献   

13.
1. The -->H(+)/e(-) quotients for proton release from mitochondria associated with electron flow from succinate and duroquinol to O(2), ferricyanide or ferricytochrome c, and from NNN'N'-tetramethyl-p-phenylenediamine+ascorbate to O(2), were determined from rate measurements of electron flow and proton translocation. 2. Care was taken to avoid, or to take into account, unrelated electron flow and proton translocation, which might take place in addition to the oxido-reductions that were the subject of our analysis. Spectrophotometric techniques were chosen to provide accurate measurement of the rate of consumption of oxidants and reductants. The rate of proton translocation was measured with fast pH meters with a precision of 10(-3) pH unit. 3. The -->H(+)/O quotient for succinate or duroquinol oxidation was, at neutral pH, 4, when computed on the basis of spectrophotometric determinations of the rate of O(2) consumption or duroquinol oxidation. Higher -->H(+)/O quotients for succinate oxidation, obtained from polarographic measurements of O(2) consumption, resulted from underestimation of the respiratory rate. 4. The -->H(+)/2e(-) quotient for electron flow from succinate and duroquinol to ferricyanide or ferricytochrome c ranged from 3.9 to 3.6. 5. Respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate by antimycin-inhibited mitochondria resulted in extra proton release in addition to that produced for oxidation of ascorbate to dehydroascorbate. Accurate spectrophotometric measurement of respiration showed that the -->H(+)/e(-) ratio was only 0.25 and not 0.7-1.0 as obtained with the inadequate polarographic assay of respiration. Proton release was practically suppressed when mitochondria were preincubated aerobically in the absence of antimycin. Furthermore, the rate of scalar proton consumption for water production was lower than that expected from the stoicheiometry. Thus the extra proton release observed during respiration elicited by NNN'N'-tetramethyl-p-phenylenediamine+ascorbate is caused by oxidation of endogenous hydrogenated reductants. 6. It is concluded that (i) the -->H(+)/O quotient for the cytochrome system is, at neutral pH, 4 and not 6 or 8 as reported by others; (ii) all the four protons are released during electron flow from quinol to cytochrome c; (iii) the oxidase transfers electrons from cytochrome c to protons from the matrix aqueous phase and does not pump protons from the matrix to the outer aqueous phase.  相似文献   

14.
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.  相似文献   

15.
Membranes isolated from Bacillus cereus ATCC 4342 during vegetative growth and during sporulation contained cytochromes b, c and a + a(3) as well as flavoprotein as determined from reduced-minus-oxidized difference spectra. Although there appeared to be no qualitative change in the cytochromes, there was a significant increase in the amount of cytochromes associated with membranes isolated from sporulating cells. Succinate and nicotinamide adenine dinucleotide (reduced form) (NADH) reduced the same cytochromes indicating similar pathways of electron transport. The electron transport inhibitors-cyanide, azide, 2-heptyl-4-hydroxyquinoline-N-oxide, dicumarol and atebrine-were examined for their effect on succinate oxidase (succinate: [O(2)] oxidoreductase) and NADH oxidase (NADH: [O(2)] oxidoreductase). NADH oxidase associated with vegetative cell membranes was less sensitive to certain inhibitors than was succinate oxidase, suggesting a branched electron transport pathway for NADH oxidation. In addition to electrons being passed to O(2) through a quinone-cytochrome chain, it appears that these intermediate carriers can be bypassed such that O(2) is reduced by electrons mediated by NADH dehydrogenase. Both oxidases associated with sporulating cell membranes were inhibited to a lesser degree than were the oxidases associated with vegetative cell membranes.  相似文献   

16.
Costa, L.E., Reynafarje, B. and Lehninger, A.L. [(1984) J. Biol. Chem. 259, 4802-4811] have reported 'second-generation' measurements of the H+/O ratio approaching 8.0 for vectorial H+ translocation coupled to succinate oxidation by rat liver mitochondria. In a Commentary in this Journal [Krab, K., Soos, J. and Wikstr?m, M. (1984) FEBS Lett. 178, 187-192] it was concluded that the measurements of Costa et al. significantly overestimated the true H+/O stoichiometry. It is shown here that the mathematical simulation on which Krab et al. based this claim is faulty and that data reported by Costa et al. had already excluded the criticism advanced by Krab et al. Also reported are new data, obtained under conditions in which the arguments of Krab et al. are irrelevant, which confirm that the H+/O ratio for succinate oxidation extrapolated to level flow is close to 8.  相似文献   

17.
A procedure was described for preparing intact mitochondria from spinach (Spinacia oleracea L.) leaves. These mitochondria oxidized succinate, malate, pyruvate, α-ketoglutarate, and NADH with good respiratory control and ADP/O ratios comparable to those observed with mitochondria from other plant tissues. Glycine was oxidized by the preparations. This oxidation linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport and phosphorylation inhibitors.  相似文献   

18.
1. The respiration of rat liver mitochondria was compared with different substrates, and with sucrose and saline media. The maximum rates of oxidation obtainable from glutamate, oxoglutarate, glutamate+malate, or succinate were higher in the saline (120mm)-tris (20mm) media than in sucrose (250mm)-tris (20mm) mixtures, but the rate with beta-hydroxybutyrate was unchanged. Addition of valinomycin to a medium with sucrose and 5mm-potassium chloride led to rates similar to those measured in saline media; beta-hydroxybutyrate oxidation was unaffected. 2. Some pairs of substrates together provided a rate of oxidation greater than the sum of the separate rates. This is accountable if removal of inhibitory products, such as oxaloacetate, compensates for any mutual competition between the substrates. Other pairs showed rates less than the sum of the separate rates, which is accountable by mutual competition. beta-Hydroxybutyrate and other substrates, except succinate, provided strictly additive rates; with succinate there was evidence for competition. In the presence of rotenone, succinate oxidation was slowed down by citrate, oxoglutarate (+arsenite) and by beta-hydroxybutyrate. 3. The accumulation of substrates in the mitochondria was measured as a function of the concentration and in the presence of possible competitors, or with a potassium salt and valinomycin to induce uptake of K(+). The quantities of oxoglutarate, glutamate and pyruvate increased with the mitochondrial K(+), but the quantities of beta-hydroxybutyrate did not. Most substrates competed between themselves, although citrate accumulation was somewhat increased by oxoglutarate. beta-Hydroxybutyrate competed for accumulation only with succinate, and was unaffected by other substrates. beta-Hydroxybutyrate accumulation was almost linearly related to applied concentration (up to 5mm), and its rate of reaction was linearly dependent on concentration up to the highest value tested (0.75mm). Hence it differed from other substrates, which are accumulated and oxidized in a manner that follows a saturation law, with K(m) values about 1-10mm. 4. It is concluded that beta-hydroxybutyrate is stored in a compartment operationally distinct from the space containing K(+) and the NAD-linked substrates. It seems likely that succinate enters both compartments. 5. The degree of accumulation and the effectiveness of an anion as a competitor (as judged by low K(i)) increases with the net charge. This is indicative of an electrostatic interaction with positive sites. It is suggested that the facilitating influence of dicarboxylic acids on the permeation of tricarboxylic acids may be due to the assembling of pairs of the positive carriers by the former, so favouring the chance of there being three or more carriers in a small volume of space near the boundary to interact with the tricarboxylic anion.  相似文献   

19.
The effects of hormones on the cytochrome spectra of isolated hepatocytes were recorded under conditions of active gluconeogenesis from L-lactate. Glucagon, phenylephrine, vasopressin and valinomycin, at concentrations that caused stimulation of gluconeogenesis, increased the reduction of the components of the cytochrome bc1 complex, just as has been observed in liver mitochondria isolated from glucagon-treated rats [Halestrap (1982) Biochem. J. 204, 37-47]. The effects of glucagon and phenylephrine were additive. The time courses of the increased reduction of cytochrome c/c1 and NAD(P)H/NAD(P)+ caused by hormones, valinomycin, A23187 and ethanol were measured by dual-beam spectrophotometry and fluorescence respectively. Ethanol (14 mM) produced a substantial rise in NAD(P)H fluorescence, beta-hydroxybutyrate/acetoacetate and lactate/pyruvate ratios, no change in cytochrome c/c1 reduction, a 10% decrease in O2 consumption and a 60% decrease in gluconeogenesis. Glucagon, phenylephrine and vasopressin caused a substantial and transient rise in NAD(P)H fluorescence, but a sustained increase in cytochrome c/c1 reduction and the rates of O2 consumption and gluconeogenesis. The transience of the fluorescence response was greater in the absence of Ca2+, when the cytochrome c/c1 response also became transient. The fluorescence response was smaller and less transient, but the cytochrome c/c1 response was greater, in the presence of fatty acids. Both responses were greatly decreased by the presence of 1 mM-pent-4-enoate. Valinomycin (2.5 nM) caused a decrease in NAD(P)H fluorescence coincident with an increase in cytochrome c/c1 reduction and the rate of gluconeogenesis and O2 consumption. A23187 (7.5 mM) caused increases in both NAD(P)H fluorescence and cytochrome c/c1 reduction. The effects of hormones and valinomycin on the time courses of NAD(P)H fluorescence, cytochrome c/c1 reduction and light-scattering by hepatocytes were compared with those of 0.5 microM-Ca2+ or 1 nM-valinomycin on the same parameters of isolated liver mitochondria. It is concluded that hormones increase respiration by hepatocytes in a biphasic manner. An initial Ca2+-dependent activation of mitochondrial dehydrogenases rapidly increases the mitochondrial [NADH], which is followed by a volume-mediated stimulation of fatty acid oxidation and electron flow between NADH and cytochrome c. 10. Amytal (0.5 mM) was able to reverse the effects of hormones on the reduction of cytochromes c/c1 and the rates of gluconeogenesis and O2 consumption without significantly lowering tissue [ATP].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号