共查询到20条相似文献,搜索用时 15 毫秒
1.
Overproduction and purification of the Tn3 transposase 总被引:1,自引:0,他引:1
2.
In vitro transposition of Tn552: a tool for DNA sequencing and mutagenesis. 总被引:1,自引:0,他引:1 下载免费PDF全文
T J Griffin th L Parsons A E Leschziner J DeVost K M Derbyshire N D Grindley 《Nucleic acids research》1999,27(19):3859-3865
We have explored the potential of the Tn 552 in vitro transposition reaction as a genetic tool. The reaction is simple (requiring a single protein component), robust and efficient, readily producing insertions into several percent of target DNA. Most importantly, Tn 552 insertions in vitro appear to be essentially random. Extensive analyses indicate that the transposon exhibits no significant regional or sequence specificity for target DNA and leaves no discernible 'cold' spots devoid of insertions. The utility of the in vitro reaction for DNA sequencing was demonstrated with a cosmid containing the Mycobacterium smegmatis recBCD gene cluster. The nucleotide sequence of the entire operon was determined using 71 independent Tn 552 insertions, which generated over 13.5 kb of unique sequence and simultaneously provided a comprehensive collection of insertion mutants. The relatively short ends of Tn 552 make construction of novel transposons a simple process and we describe several useful derivatives. The data presented suggest that Tn 552 transposition is a valuable addition to the arsenal of tools available for molecular biology and genomics. 相似文献
3.
4.
Tn5 transposase active site mutants 总被引:7,自引:0,他引:7
Tn5 transposase (Tnp) is a 53.3-kDa protein that is encoded by and facilitates movement of transposon Tn5. Tnp monomers contain a single active site that is responsible for catalyzing a series of four DNA breaking/joining reactions at one transposon end. Based on primary sequence homology and protein structural information, we designed and constructed a series of plasmids that encode for Tnps containing active site mutations. Following Tnp expression and purification, the active site mutants were tested for their ability to form protein-DNA complexes and perform each of the four catalytic steps in the transposition pathway in vitro. The results demonstrate that Asp-97, Asp-188, and Glu-326, visible in the active site of Tn5 crystal structures, are absolutely required for all catalytic steps. Mutations within a series of amino acid residues that are conserved in the IS4 family of transposases and retroviral integrases also impair Tnp catalytic activity. Mutations at either Tyr-319 or Arg-322 reduce both hairpin resolution and strand transfer activity within protein-DNA complexes. Mutations at Lys-333 reduce the ability of Tnps to form protein-DNA complexes, whereas mutations at the less strongly conserved Lys-330 have less of an effect on both synaptic complex formation and catalytic activity. 相似文献
5.
The staphylococcal beta-lactamase transposon Tn552 is a member of a novel group of transposable elements. The organization of genes in Tn552 resembles that of members of the Tn21 sub-group of Tn3 family transposons, which transpose replicatively by cointegrate formation and resolution. Thus, a possible resolution site ('resL') and a resolvase gene (tnpR or 'binL') have been identified. However, consistent with the fact that Tn552 generates 6 bp (rather than 5 bp) flanking direct repeats of target DNA, neither the putative transposase protein, nor the terminal inverted repeats of Tn552 are homologous to those of Tn3 elements. Tn552, like phage Mu and retroelements, is defined by the terminal dinucleotides 5' TG .. CA 3'. A naturally occurring staphylococcal plasmid, pI9789, contains a Tn552-derived resolution system ('resR-binR') that acts as a 'hotspot' for Tn552 transposition; insertion creates a segment of DNA flanked by inversely repeated resolution sites, one (resR) on pI9789 and the other (resL) on Tn552. The putative Tn552 resolvase, the most closely related of known resolvases to the homologous DNA invertases, initially was identified as a DNA invertase ('Bin') as a result of its ability to mediate efficient inversion of this segment in vivo. 相似文献
6.
M D Ditto J Chou M W Hunkapiller M A Fennewald S P Gerrard L E Hood S N Cohen M J Casadaban 《Journal of bacteriology》1982,149(1):407-410
The amino-terminal sequence of the Tn3 transposase protein was determined to be Pro-Val-Asp-Phe-Leu-Thr-Thr-Glu-Gln-Val-Glu-Ser.... This was determined both from an active transposase protein purified from a transposase overproducing mutant strain and from a hybrid transposase-beta-galactosidase fusion protein. The amino acid sequence corresponded to the DNA sequence of the transposase gene beginning at an ATG initiation codon, as previously predicted from the analysis of transposase-beta-galactosidase gene fusions. 相似文献
7.
Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation 下载免费PDF全文
Tn7 transposition has been hypothesized to require a heteromeric transposase formed by two Tn7-encoded proteins, TnsA and TnsB, and accessory proteins that activate the transposase when they are associated with an appropriate target DNA. This study investigates the mechanism of Tn7 transposase activation by isolation and analysis of transposase gain-of-function mutants that are active in the absence of these accessory proteins. This work shows directly that TnsA and TnsB are essential and sufficient components of the Tn7 transposase and also provides insight into the signals that activate the transposase. We also describe a protein-protein interaction between TnsA and TnsC, a regulatory accessory protein, that is likely to be critical for transposase activation. 相似文献
8.
Tn5 transposition is a complicated process that requires the formation of a highly ordered protein-DNA structure, a synaptic complex, to catalyse the movement of a sequence of DNA (transposon) into a target DNA. Much is known about the structure of the synaptic complex and the positioning of protein-DNA contacts, although many protein-DNA contacts remain largely unstudied. In particular, there is little evidence for the positioning of donor DNA and target DNA. In this communication, we describe the isolation and analysis of mutant transposases that have, for the first time, provided genetic and biochemical evidence for the stage-specific positioning of both donor and target DNAs within the synaptic complex. Furthermore, we have provided evidence that some of the amino acids that contact donor DNA also contact target DNA, and therefore suggest that these amino acids help define a bifunctional DNA binding region responsible for these two transposase-DNA binding events. 相似文献
9.
Transposases mediate transposition first by binding specific DNA end sequences that define a transposable element and then by organizing protein and DNA into a highly structured and stable nucleoprotein 'synaptic' complex. Synaptic complex assembly is a central checkpoint in many transposition mechanisms. The Tn5 synaptic complex contains two Tn5 transposase subunits and two Tn5 transposon end sequences, exhibits extensive protein-end sequence DNA contacts and is the node of a DNA loop. Using single-molecule and bulk biochemical approaches, we found that Tn5 transposase assembles a stable nucleoprotein complex in the absence of Tn5 transposon end sequences. Surprisingly, this end sequence-independent complex has structural similarities to the synaptic complex. This complex is the node of a DNA loop; transposase dimerization and DNA specificity mutants affect its assembly; and it likely has the same number of proteins and DNA molecules as the synaptic complex. Furthermore, our results indicate that Tn5 transposase preferentially binds and loops a subset of non-Tn5 end sequences. Assembly of end sequence-independent nucleoprotein complexes likely plays a role in the in vivo downregulation of transposition and the cis-transposition bias of many bacterial transposases. 相似文献
10.
Binding of the Tn3 transposase to the inverted repeats of Tn3 总被引:4,自引:0,他引:4
The transposase protein and the inverted repeat sequences of Tn3 are both essential for Tn3 cointegrate formation and transposition. We have developed two assays to detect site-specific binding of transposase to the inverted repeats: (1) a nitrocellulose filter binding assay in which transposase preferentially retains DNA fragments containing inverted repeat sequences, and (2) a DNase 1 protection assay in which transposase prevents digestion of the inverted repeats by DNase 1. Both assays show that transposase binds directly to linear, duplex DNA containing the inverted repeats. The right inverted repeat of Tn3 binds slightly more strongly than the left one. Site-specific binding requires magnesium but does not require a high energy cofactor. 相似文献
11.
Purification and biochemical analyses of a monomeric form of Tn5 transposase. 总被引:2,自引:3,他引:2 下载免费PDF全文
The binding of transposase (Tnp) to the specific Tn5 end sequences is the first dedicated reaction during transposition. In this study, comparative DNA-binding analyses were performed using purified full-length Tnp and a C-terminal deletion variant (delta369) that lacks the putative dimerization domain. The shape of the binding curve of full-length Tnp is sigmoidal in contrast to the hyperbolic-shaped binding curve of delta369. This observation is consistent with previous observations as well as a rate of binding study presented here, which suggest that the full-length Tnp-end interaction, unlike that of the truncated protein, is a complex time-dependent reaction possibly involving a subunit exchange. Circular permutation assay results indicate that both proteins are capable of distorting the Tn5end sequences upon binding. Molecular weight determinations based on the migratory patterns of complexed DNA in polyacrylamide gels has shown that delta369 specifically binds the Tn5 end sequences as a monomer while full-length Tnp in complex represents a heterodimer. 相似文献
12.
The bacterial transposon Tn7 translocates by a cut and paste mechanism: excision from the donor site results from double-strand breaks at each end of Tn7 and target insertion results from joining of the exposed 3'' Tn7 tips to the target DNA. Through site-directed mutagenesis of the Tn7-encoded transposition proteins TnsA and TnsB, we demonstrate that the Tn7 transposase is a heteromeric complex of these proteins, each protein executing different DNA processing reactions. TnsA mediates DNA cleavage reactions at the 5'' ends of Tn7, and TnsB mediates DNA breakage and joining reactions at the 3'' ends of Tn7. Thus the double-strand breaks that underlie Tn7 excision result from a collaboration between two active sites, one in TnsA and one in TnsB; the same (or a closely related) active site in TnsB also mediates the subsequent joining of the 3'' ends to the target. Both TnsA and TnsB appear to be members of the retroviral integrase superfamily: mutation of their putative DD(35)E motifs blocks catalytic activity. Recombinases of this class require a divalent metal cofactor that is thought to interact with these acidic residues. Through analysis of the metal ion specificity of a TnsA mutant containing a sulfur (cysteine) substitution, we provide evidence that a divalent metal actually interacts with these acidic amino acids. 相似文献
13.
Abundance of Tn3, Tn21, and Tn501 transposase (tnpA) sequences in bacterial community DNA from marine environments. 总被引:4,自引:1,他引:4 下载免费PDF全文
The occurrence of the tnpA genes of the transposons Tn3, Tn21, and Tn501 was assessed in total bacterial community DNA isolated from different marine environments. The PCR technique was employed, together with most probable number statistics, to determine the abundance of the target tnpA genes. All three genes could be detected, and the Tn21 tnpA sequences predominated in all samples. The smallest amount of total community DNA in which the Tn21 tnpA sequence could be detected was 0.037 ng, and on the basis of our results, we estimated that this sequence was present in 1 of 1,000 to 10,000 bacteria. Hybridization of the PCR products with the respective tnpA probes verified the Tn21 and Tn501 tnpA sequences but only some of the Tn3 tnpA amplification products. The distribution and dissemination of transposons in natural bacterial communities are discussed. 相似文献
14.
DNA binding and phasing analyses of Tn5 transposase and a monomeric variant. 总被引:5,自引:3,他引:2 下载免费PDF全文
Both full-length Tn 5 transposase and a COOH-terminal truncated monomeric form of the protein,n369, have been shown to specifically bind end sequences at comparable affinities. In addition, both proteins distort the target sequence in a similar manner, as determined by a circular permutation assay. In this study,nEK54, a derivative ofn369 with a single amino acid substitution that significantly enhances binding activity, is used in further binding and bending studies along with full-length transposase. Phasing analysis has shown that distortion of the end sequences upon binding of full-length transposase and nEK54 protein is due in part to a protein-induced bend oriented towards the major groove. Because the center of transposase-induced bending maps to the extreme leftward end of the 19 bp consensus sequence, we examined the possibility that optimal protein binding requires additional upstream nucleotide contacts. Experiments presented here show that 9-10 nucleotides are needed upstream of +1 of the 19 bp sequence for efficient binding and this requirement can be met by either single-stranded or double-stranded DNA. 相似文献
15.
Braunstein M Griffin TJ IV Kriakov JI Friedman ST Grindley ND Jacobs WR 《Journal of bacteriology》2000,182(10):2732-2740
Secreted and cell envelope-associated proteins are important to both Mycobacterium tuberculosis pathogenesis and the generation of protective immunity to M. tuberculosis. We used an in vitro Tn552'phoA transposition system to identify exported proteins of M. tuberculosis. The system is simple and efficient, and the transposon inserts randomly into target DNA. M. tuberculosis genomic libraries were targeted with Tn552'phoA transposons, and these libraries were screened in M. smegmatis for active PhoA translational fusions. Thirty-two different M. tuberculosis open reading frames were identified; eight contain standard signal peptides, six contain lipoprotein signal peptides, and seventeen contain one or more transmembrane domains. Four of these proteins had not yet been assigned as exported proteins in the M. tuberculosis databases. This collection of exported proteins includes factors that are known to participate in the immune response of M. tuberculosis and proteins with homologies, suggesting a role in pathogenesis. Nine of the proteins appear to be unique to mycobacteria and represent promising candidates for factors that participate in protective immunity and virulence. This technology of creating comprehensive fusion libraries should be applicable to other organisms. 相似文献
16.
The frequencies of one-ended transposition mediated by the Tn21 transposase acting on plasmids containing 38-bp inverted repeat sequences (IRs) of both Tn21 and of Tn501/Tn1721 and Tn2501 were measured. The enzyme acted on all these IRs, but more efficiently on the homologous sequences. These differences were magnified when the enzyme acted on plasmids containing two copies of the IRs, inverted with respect to each other. The Tn21 enzyme did not recognize the IR of Tn3. The Tn501 transposase did not mediate measurable one-ended transposition of any of the plasmids used, including those containing an IR of Tn501. 相似文献
17.
Mutations in the inverted repeats of Tn3 affect binding of transposase and transposition immunity. 总被引:3,自引:0,他引:3
In order to better understand the interaction between the inverted repeats (IRs) of the transposon Tn3 and Tn3 transposase, we have looked at the effects of mutations within the IRs on binding of transposase and transposition immunity. Binding of transposase to mutated IRs was measured using a site-specific nitrocellulose filter binding assay and by DNase I protection studies. Transposition immunity was measured in vivo using a transposition mating-out assay. The most important determinants for binding of transposase are present within the inside 21 base-pairs of the IR and several single base-pair mutations significantly reduce binding. Base-pair mutations which do not effect binding have strong negative effects on transposition immunity indicating that simple binding of transposase to the IR is not sufficient for the establishment of transposition immunity. 相似文献
18.
Comparative sequence analysis of IS50 transposase-related protein sequences in conjunction with known structural, biochemical, and genetic data was used to determine domains and residues that play key roles in IS50 transposase function. BLAST and ClustalW analyses have been used to find and analyze six complete protein sequences that are related to the IS50 transposase. The protein sequence identity of these six homologs ranged from 25 to 55% in comparison to the IS50 transposase. Homologous motifs were found associated with each of the three catalytic residues. Residues that play roles in transposase-DNA binding, protein autoregulation, and DNA hairpin formation were also found to be conserved in addition to other residues of unknown function. On the other hand, some homologous sequences did not appear to be competent to encode the inhibitor regulatory protein. The results were also used to compare the IS50 transposase with the more distantly related transposase encoded by IS10. 相似文献
19.
Tn552, a novel transposable element from Staphylococcus aureus 总被引:32,自引:5,他引:32
Tn552, one of several closely related beta-lactamase-encoding transposons from Staphylococcus aureus, has a novel set of putative transposition functions. Each is homologous with a well-characterized function from a different type of mobile genetic element. Thus, Tn552 encodes: (i) resL-binL, a co-integrate resolution system homologous with those of Tn3 family elements; (ii) p480, a potential transposase significantly homologous with the DNA integrases of eukaryotic retroviruses and retrotransposons; and (iii) p271, a potential ATP-binding protein that shows homology with the B protein of phage Mu. The 3' terminal nucleotides of Tn552 (CA), adjacent to which p480 might cleave, are the same as those of retroviruses, retrotransposons and phage Mu. The presumptive resolvase (BinL) is very closely related to BinR, which was identified as a DNA invertase and is now shown to resolve an artificial co-integrate in vivo. Furthermore, the structure of the derivative of Tn552 found in the staphylococcal plasmid pI258 can be explained by a BinL (or BinR)-mediated site-specific deletion ('resolution') event. Thus, pI258 contains only the right-hand half of Tn552, which encodes the beta-lactamase and two regulatory proteins. The latter are homologous with the beta-lactamase gene repressor and co-inducer of Bacillus licheniformis. Interestingly, the order of the regulatory genes is reversed in S. aureus compared with Bacillus licheniformis. 相似文献
20.
The LexA protein of Escherichia coli represses expression of a variety of genes that, by definition, constitute the SOS regulon. Genetic evidence suggests that Tn5 transposition is also regulated by the product of the lexA gene (C.-T. Kuan, S.-K. Liu, and I. Tessman, Genetics 128:45-57, 1991). We now show that the LexA protein represses expression of the tnp gene, located in the IS50R component of Tn5, which encodes a transposase, and that LexA does not repress expression of the IS50R inh gene, which encodes an inhibitor of transposition. Elimination of LexA resulted in increased expression of the tnp gene by a factor of 2.7 +/- 0.4, as indicated by the activity of a lacZ gene fused to the tnp gene. LexA protein retarded the electrophoretic movement of a 101-bp segment of IS50R DNA that contained a putative LexA protein-binding site in the tnp promoter; the interaction between the LexA repressor and the promoter region of the tnp gene appears to be relatively weak. These features show that the IS50R tnp gene is a member of the SOS regulon. 相似文献