首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant-mediated indirect interactions among herbivores (arthropods and pathogens) are common and extensively reported in the ecological literature. However, they are not well-documented with respect to weed biological control. Such interactions between biological control agents can have net positive or negative impacts on total weed suppression depending on the strength of the interaction(s), the relative importance of the agent indirectly impacted, and the combined weed suppression that results. A better understanding of plant-mediated interactions may improve decision-making about which agents to introduce in classical biological control programs for greatest impact on invasive weeds. This paper reviews the subject, including examples from the biological control literature; outlines the need for research on indirect effects of herbivores on other herbivores; discusses how such knowledge may strengthen classical biological control programs for invasive weeds; and provides recommendations for the kind of studies that should be done and how information about plant-mediated interactions could be integrated into agent evaluation protocols, to assist in decision-making about agents for importation and release.  相似文献   

2.
Integrating classical biological control with other management techniques such as herbicide, fire, mechanical control, grazing, or plant competition, can be the most effective way to manage invasive weeds in natural areas and rangelands. Biological control agents can be protected from potential negative impacts of these weed control methods through untreated refugia or by applying the treatment at a time when the agent is not vulnerable. A literature review of experiments that integrated biological control with other management strategies from 1987 to 2017 yielded 39 terrestrial and 16 aquatic studies. The tactics most frequently integrated with biological control were herbicide applications and plant competition. Despite numerous examples of successful programs and calls for more widespread integration of biological control with other weed management strategies, there was no increase in the number of studies reported annually over time. Additional studies investigating the ecological and economic benefits of integrated weed management are needed.  相似文献   

3.
Forest ecosystems world-wide are being subjected to invasion by organisms representing all domains of life. Here we use a combined aboveground-belowground approach to provide a conceptual framework for assessing how forests respond to biological invasions. We first address mechanisms by which invasive plants and aboveground and belowground consumers impact on forests, and highlight that although we have a growing understanding of the determinants of the effects of invasive plants, for invasive consumers we have yet to move from a series of iconic case studies to the development of general principles. We also address the effects of invasive biota in the context of the drivers of invasion, co-invasion and invasional meltdown, the issue of simultaneous species gains and losses, and forest restoration and recovery post-invasion. We then highlight areas that would benefit from further work, particularly regarding underlying mechanisms, determinants of context-dependency of invader effects, and linkages between causes and consequences of invasion. In concluding, we emphasize that biological invaders have the potential for large-scale and long-term impacts on forest processes, and consideration of these impacts in an aboveground-belowground context will enable better prediction of future responses of forests to invaders and their management as well as of restoration efforts.  相似文献   

4.
A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>99% of 512 agents released) have had no known significant adverse effects on non-target plants thus far; major effects suppressing non-target plant populations could be expected to be detectable. Most direct non-target impacts on plants (91.6%) were categorized as minimal or minor in magnitude with no known adverse long-term impact on non-target plant populations, but a few cacti and thistles are affected at moderate (n = 3), major (n = 7) to massive (n = 1) scale. The largest direct impacts are from two agents (Cactoblastis cactorum on native cacti and Rhinocyllus conicus on native thistles), but these introductions would not be permitted today as more balanced attitudes exist to plant biodiversity, driven by both society and the scientific community. Our analysis shows (as far as is known), weed biological control agents have a biosafety track record of >99% of cases avoiding significant non-target impacts on plant populations. Some impacts could have been overlooked, but this seems unlikely to change the basic distribution of very limited adverse effects. Fewer non-target impacts can be expected in future because of improved science and incorporation of wider values. Failure to use biological control represents a significant opportunity cost from the certainty of ongoing adverse impacts from invasive weeds. It is recommended that a simple five-step scale be used to better communicate the risk of consequences from both action (classical biological control) and no action (ongoing impacts from invasive weeds).  相似文献   

5.
Successful management of invasive weeds will require active attempts to prevent new introductions, vigilant detection of nascent populations and persistent efforts to eradicate the worst invaders. To achieve these objectives, invasion ecology offers five groups of complementary approaches. (i) Stochastic approaches allow probabilistic predictions about potential invaders based on initial population size, residence time and number of introduction attempts. (ii) Empirical taxon‐specific approaches are based on previously documented invasions of particular taxa. (iii) Evaluations of the biological characters of non‐invasive taxa and successful invaders give rise either to general or to habitat‐specific screening procedures. (iv) Evaluation of environmental compatibility helps to predict whether a particular plant taxon can invade specific habitats. (v) Experimental approaches attempt to tease apart intrinsic and extrinsic factors underlying invasion success. An emerging theory of plant invasiveness based on biological characters has resulted in several rather robust predictions which are presented in this paper.  相似文献   

6.
Knowledge of characteristics helpful in screening potential invaders and in elaborating strategies to limit their success is highly desirable. We focused on gammarid amphipods from Western Europe and North America to discover biological and/or ecological traits that may explain successful invasion by these species. Two typologies were considered: an analytical one, with groups built on the basis of biological or ecological similarities, and an empirical one, with groups constituted a priori according to a species’ invasive status and its fresh or brackish water origin. The results obtained are discussed in the light of three hypotheses that may influence invasiveness: biotic potential, species size and euryoeciousness. The analysis revealed a particular ecological profile for invaders, with a strong influence of salinity tolerance, but no typology was found based on biological characteristics. Invasiveness cannot be predicted from a limited number of criteria, and is the result of a combination of several characteristics. Invasive species therefore exhibit a particular ecological profile rather than a biological one, contrary to most classical explanations.  相似文献   

7.
Despite a well-developed theoretical basis for the role of genetic diversity in the colonization process, contemporary investigations of genetic diversity in biological invasions have downplayed its importance. Observed reductions in genetic diversity have been argued to have a limited effect on the success of establishment and impact based on empirical studies; however, those studies rarely include assessment of failed or comparatively less-successful biological invasions. We address this gap by comparing genetic diversity at microsatellite loci for taxonomically and geographically paired aquatic invasive species. Our four species pairs contain one highly successful and one less-successful invasive species (Gobies: Neogobius melanostomus, Proterorhinus semilunaris; waterfleas: Bythotrephes longimanus, Cercopagis pengoi; oysters: Crassostrea gigas, Crassostrea virginica; tunicates: Bortylloides violaceous, Botryllus schlosseri). We genotyped 2717 individuals across all species from multiple locations in multiple years and explicitly test whether genetic diversity is lower for less-successful biological invaders within each species pair. We demonstrate that, for gobies and tunicates, reduced allelic diversity is associated with lower success of invasion. We also found that less-successful invasive species tend to have greater divergence among populations. This suggests that intraspecific hybridization may be acting to convert among-population variation to within-population variation for highly successful invasive species and buffering any loss of diversity. While our findings highlight the species-specific nature of the effects of genetic diversity on invasion success, they do support the use of genetic diversity information in the management of current species invasions and in the risk assessment of potential future invaders.  相似文献   

8.
Invasive plants can affect native plants through competition or allelopathy, and researchers often use pot experiments as a tool to measure the strength of these interactions. Recently, such pot experiments provided inconsistent estimates of the impact and allelopathic potential of invasive knotweed, one of the world’s most successful plant invaders. We suspected that the inconsistencies may be explained by the use of different substrates in different experiments. To test this, we conducted an experiment in which knotweed competed pairwise with five common native European species in several different substrates: two compost-based potting substrates and two natural soils, with or without extra fertilizer added. To test for allelopathy, we added activated carbon to half of the pots. We found that knotweed was generally much more successful, and there was much more evidence for its allelopathy, when tested in artificial potting substrates than in natural soils. Furthermore, addition of extra fertilizer decreased the dominance of knotweed and changed patterns of allelopathy. The physicochemical properties of potting soil, such as lower bulk density, higher pore space, permeability and nitrogen content may better allow rhizomes to penetrate and/or allelochemicals to be produced and diffused. If artificial substrates generally exaggerate dominance and allelopathy also in other invasive plants, then many previous studies may have overestimated the potential impact of invaders, and the results of these experiments should be interpreted with caution. To avoid misleading results, experiments that test the competitive or allelopathic impact of invasive plants should be done with natural soils, preferably from the targeted habitats.  相似文献   

9.
Plant compensatory growth is proposed to be insidious to biological control and known to vary under different environmental conditions. However, the effects of microsite conditions on compensation capacity and its indirect impacts on biological control of plant invaders have received little attention. Alligator weed, Alternanthera phioxeroides, is an invasive plant worldwide, growing in both aquatic and terrestrial habitats that are often affected by flooding. Biological control insects have been successful in suppressing the plant in many aquatic habitats but have failed in terrestrial habitats. To evaluate the impact of flooding on compensation capacity, we conducted common garden and greenhouse experiments in which plants were grown under different moisture conditions (aquatic versus terrestrial). Our results show that plants were able to fully recover from continued herbivory in the terrestrial habitat, but failed in the aquatic habitat, indicating a flooding-regulated plant compensatory capacity. Also, the grazed plants increased below-ground growth and reproductive root bud formation in the terrestrial habitat, but there was no such difference in the aquatic habitat. Our findings suggest that the differing plant compensatory capacity, affected by flooding, may explain the different biological control efficacy of alligator weed in aquatic and terrestrial habitats. Understanding mechanisms in plant invader compensation in different microsite conditions is important for improving management efficiency.  相似文献   

10.
The savanna biome is one of the least invaded among global biomes, although the mechanisms underpinning its resistance to alien species relative to other biomes is not well understood. Invaders generally are at the resource acquisitive end of functional global plant trait variation and in low-resource savanna environments we might expect that successful invaders will only outperform native species under resource rich or highly disturbed conditions. However, invaders may also directly exploit resource stressed environments using resource conservative traits in some situations. It’s also possible that successful invaders and native species largely overlap in their trait profiles indicating site specific environmental factors are responsible for invader success in particular contexts rather than a general trait and functional divergence between invaders and native species. To address these various hypotheses, we compared a suite of morphological and physiological traits in graminoid and herbaceous native and co-occurring invasive plant species across a range of habitats in savannas of the Kimberley region of northern Australia. Invader grass species had traits associated with resource acquisition and fast growth rates, such as high SLA and leaf nutrient contents. In contrast, dominant native perennial grasses had traits characteristic of resource conservation and slow growth in resource stressed conditions. Trait profiles among invasive forbs and legumes exhibited stress tolerant traits relative to their native counterparts. Invaders also displayed strong divergence in reproductive traits, suggesting diverse responses to disturbance not indicated by leaf economic traits alone. These results suggest that savannas may be resistant to invaders with resource acquisitive traits due to their strong resource limitation.  相似文献   

11.
Several invasive Asteraceae have been targeted for biological control worldwide, with variable success. Senecio madagascariensis Poiret, which invades agricultural lands in Australia and Hawaii, is a recent target. Since several potential insect agents were recorded in the plant’s native range in South Africa, we assessed biocontrol efforts against asteraceous weeds to determine those most likely to deliver success. Some 108 insect species, from five orders and 23 families, were deployed against 38 weed taxa, mostly in the mainland USA, Canada, Australia and New Zealand. Coleoptera (mainly Curculionidae and Chrysomelidae), Diptera (Tephritidae) and Lepidoptera (Tortricidae) featured the most. Despite high establishment success (73% of releases across countries), only 37% of successful releases achieved meaningful impact. Although root-feeding and stem-feeding insects appeared to be the best candidates, neither insect family nor feeding guild significantly influenced the probability of success. This synthesis of the global contribution of different guilds of specialist herbivores to the management of invasive Asteraceae is guiding the selection of candidate agents for the biocontrol of S. madagascariensis in Australia.  相似文献   

12.
To assess potential effects of seed limitation, characteristics of invader species and characteristics of established plant communities on recruitment success, we conducted a split-plot experiment factorially combining three weeding treatments corresponding to increasing successional age (regular weeding相似文献   

13.
李保平  孟玲 《生态学报》2007,27(8):3513-3520
传统生物防治是治理外来入侵杂草危害切实可行的有效策略和途径,近来对传统生物防治的批评主要集注于,引进的生防作用物攻击威胁本土非靶标生物。引进的生防作用物可能对本土非靶标生物产生直接和间接影响,这类影响通过不同营养级生物之间的取食关系,以及通过同一营养级内生物间的竞争关系,而影响本土非靶标生物群落。列举若干杂草生物防治案例对以上影响方式及其发生途径进行了评述。就防范杂草生防作用物对非靶标生物的负面影响,提出了以下对策:(i)把引进天敌防治外来入侵生物作为最后的有效手段;(ii)适当增加对非靶标生物潜在影响的生态学评估;(iii)选择寄主专一性强而且能有效控制靶标杂草的天敌;(iv)加强对杂草传统生物防治的生态学研究。  相似文献   

14.
Biological control, using specialist insect herbivores and plant pathogens, can be a self‐sustaining, cost‐effective and low‐risk tool for the management of environmental weeds. Agents have been recorded attacking non‐target plants in New Zealand and elsewhere, but the effects are usually minor and/or transitory. It seems probable that only two cases, worldwide, will result in significant damage to non‐target plants (representing 0.5% of the nearly 400 insect, mite, or fungal species used in classical weed biocontrol). Both of these cases were predictable from host range testing. Negative indirect, or ‘downstream’, ecological effects from specific weed biocontrol agents are difficult to predict and measure. They are probably insignificant compared to the impacts of the invasive plants that the agents are introduced to control. However, it is necessary to balance the risks associated with any introduction against the environmental benefits from controlling a weed to a predicted level. Recent analyses suggest that success rates are better than generally perceived. For New Zealand programmes, where enough time has lapsed to allow assessment, we calculate a full/partial success rate of 83%. Many of the costs associated with environmental weeds are difficult to quantify. Detailed risk assessment will make biological control programmes more expensive and time‐consuming, so that reliance on non‐biological management methods for environmental weeds may actually increase. The costs of biocontrol programmes against some New Zealand weeds can be kept down by using research already carried out in Australia and other countries, and the process is reciprocal. Developing international consortia of sponsors is also a potential way to fund programmes against weeds shared by several countries.  相似文献   

15.
We propose a comprehensive program to evaluate the post-release phase of biocontrol programs that use insect herbivores to control invasive plant species. We argue that any release should be done in randomized release and non-release sites and should be followed up by well-replicated sampling and experimental protocols that evaluate the degree of success or failure. These follow-up studies should include landscape scale monitoring across relevant habitat gradients of (1) the abundance of the biocontrol agent, (2) the impact of the biocontrol agent on the target plant species, (3) the potential for non-target effects, and (4) the response of native species and communities to a reduction in the invasive species. We also argue that (5) experimental reductions of the biocontrol agent are required to eliminate the chance that the putative impact of the biocontrol agent is not confounded with other causes. Finally, we describe six scenarios, informed largely by a community ecology perspective, in which a biocontrol agent may decrease the abundance or vigor of the target plant species but not lead to successful control where native communities re-establish. We classify these failure scenarios as either direct or indirect effects of the invasive plant species: Native Source Limitation, Static Competitive Hierarchies, Novel Weapons, Trophic Shifts, Invasive Engineering and Associated Invasives. Overall, we argue that well replicated and landscape-scale post release monitoring programs are required not only to evaluate critically the degree of success and failure of biocontrol programs worldwide but also to provide insights into improving future biocontrol efforts. Handling Editor: Heikki Hokkanen.  相似文献   

16.
There has been a rapidly developing literature on the effects of some of the major drivers of global change on carbon (C) sequestration, particularly carbon dioxide (CO2) enrichment, land use change, nitrogen (N) deposition and climate change. However, remarkably little attention has been given to one major global change driver, namely biological invasions. This is despite growing evidence that invasive species can dramatically alter a range of aboveground and belowground ecosystem processes, including those that affect C sequestration. In this review, we assess the evidence for the impacts of biological invaders on forest C stocks and C sequestration by biological invaders. We first present case studies that highlight a range of invader impacts on C sequestration in forest ecosystems, and draw on examples that involve invasive primary producers, decomposers, herbivores, plant pathogens, mutualists and predators. We then develop a conceptual framework for assessing the effects of invasive species on C sequestration impacts more generally, by identifying the features of biological invaders and invaded ecosystems that are thought to most strongly regulate C in forests. Finally we assess the implications of managing invasive species on C sequestration. An important principle that emerges from this review is that the direct effects of invaders on forest C are often smaller and shorter‐term than their indirect effects caused by altered nutrient availability, primary productivity or species composition, all of which regulate long‐term C pools and fluxes. This review provides a conceptual basis for improving our general understanding of biological invaders on ecosystem C, but also points to a paucity of primary data that are needed to determine the quantitative effects of invaders on ecosystem processes that drive C sequestration.  相似文献   

17.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   

18.
Fire regimes influence and are influenced by the structure and composition of plant communities. This complex reciprocal relationship has implications for the success of plant invasions and the subsequent impact of invasive species on native biota. Although much attention has been given to the role of invasive grasses in transforming fire regimes and native plant communities, little is known about the relationship between woody invasive species and fire regime. Despite this, prescribed burning is frequently used for managing invasive woody species. In this study we review relationships between woody exotic plant invasions and fire in invaded ecosystems worldwide. Woody invaders may increase or decrease aspects of the fire regime, including fire frequency, intensity and extent. This is in contrast to grass invaders which almost uniformly increase fire frequency. Woody plant invasion can lead to escape from a grass-fire cycle, but the resulting reduction in fire frequency can sometimes lead to a cycle of rare but more intense fires. Prescribed fires may be a useful management tool for controlling woody exotic invaders in some systems, but they are rarely sufficient to eliminate an invasive species, and a dearth of controlled experiments hampers evaluation of their benefits. Nevertheless, because some woody invaders have fuel properties that differ substantially from native species, understanding and managing the impacts of woody invaders on fire regimes and on prescribed burns should become an important component of resource and biodiversity management.  相似文献   

19.
Emerging pathogens are a growing threat to human health, agriculture and the diversity of ecological communities but may also help control problematic species. Here we investigated the diversity, distribution and consequences of emerging fungal pathogens infecting an aggressive invasive grass that is rapidly colonising habitats throughout the eastern USA. We document the recent emergence and accumulation over time of diverse pathogens that are members of a single fungal genus and represent multiple, recently described or undescribed species. We also show that experimental suppression of these pathogens increased host performance in the field, demonstrating the negative effects of emerging pathogens on invasive plants. Our results suggest that invasive species can facilitate pathogen emergence and amplification, raising concerns about movement of pathogens among agricultural, horticultural, and wild grasses. However, one possible benefit of pathogen accumulation is suppression of aggressive invaders over the long term, potentially abating their negative impacts on native communities.  相似文献   

20.
Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound implications for biological control. To better understand the causes of these interactions and their implications, we evaluate recent case studies of indirect nontarget effects of biological control agents in the context of theoretical work in community ecology. We find that although particular indirect nontarget effects are extremely difficult to predict, all indirect nontarget effects of host specific biological control agents derive from the nature and strength of the interaction between the biological control agent and the pest. Additionally, recent theoretical work suggests that the degree of impact of a biological control agent on nontarget species is proportional to the agent’s abundance, which will be highest for moderately successful control agents. Therefore, the key to safeguarding against indirect nontarget effects of host-specific biological control agents is to ensure the biological control agents are not only host specific, but also efficacious. Biological control agents that greatly reduce their target species while remaining host-specific will reduce their own populations through density-dependent feedbacks that minimize risks to nontarget species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号