首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An endoribonuclease has been isolated from HeLa cell nuclei. Approximately 70% of the enzyme appears to be nucleolar bound; 30% is in the nucleoplasm. Studies of the purified enzyme reveal that the enzyme is an endonuclease of estimated molecular weight 16,000. It produces oligonucleotides bearing 5'-phosphate end groups. The enzyme degrades poly(C) and poly(U), as well as rRNA and heterogeneous nuclear RNA, Poly(A), double-stranded RNA, and DNA are not cleaved. The enzyme is heat-labile and is inhibited by 10mM Mg2+ and 50 mM NaCl. The enzyme is probably distinct from previously described nuclear endonucleases.  相似文献   

2.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

3.
DNA kinase has been purified to homogeneity from calf thymus. The purified enzyme, with a specific activity of 16.7 units/mg protein at 25 degrees C, exhibited a sharp pH/activity curve with a pH optimum at 5.5 and low activity at alkaline pH. The molecular weight of the enzyme was estimated by dodecylsulfate/polyacrylamide gel electrophoresis to be 5.4 X 10(4). The enzyme has a sedimentation coefficient of 4.0 S. An apparent molecular weight of 5.6 X 10(4) and a Stokes' radius of 3.3 nm were estimated by gel-filtration on Sephadex G-100. The enzyme phosphorylates neither yeast RNA nor poly(A) instead of DNA. Compared with rat liver DNA kinase, calf thymus DNA kinase is relatively resistant to the inhibition by sulfate (Ki = 7 mM) and pyrophosphate (Ki = 5 mM). The enzyme activity is markedly stimulated by polyamines at the sub-optimal concentration of Mg2+ but not by monovalent cations.  相似文献   

4.
J M Gardner  C I Kado 《Biochemistry》1976,15(3):688-697
A high molecular weight (6 S) plant DNA polymerase from axenic Vinca rosea tissue culture cells has been purified 2200-fold and characterized. The enzyme has a molecular weight of 105 000 (+/-5000). Sodium dodecyl sulfate-acrylamide gel electrophoresis of the purified enzyme yields polypeptide subunits having molecular weights of 70 000 and 34 000. The purified enzyme has a pH optimum of 7.5; a cation requirement optimum of 6 mM Mg2+ or 0.5 mM Mn2+; an apparent requirement for Zn2+; a Km of 1 muM for dTTP; and a 3.5-fold stimulation by 50 mM KCl. The enzyme is sensitive to N-ethylmaleimide (1 mM), heparin (0.1 muM), ethanol (5%), pyrophosphate (0.05 muM), and o-phenanthroline (0.1 mM) but is insensitive to rifamycin. Denatured DNA is found to be the best natural template, and only negligible activity can be demonstrated with the ribopolymer templates poly(dT)n-poly(rA)n and p(dT)10-poly(rA)n. In addition to the polymerization reaction, the enzyme catalyzes a pyrophosphate exchange reaction. Antibody to calf thymus 6-8S DNA polymerase does not inhibit DNA polymerase from Vinca rosea, suggesting no antigenic relationships between the mammalian and plant enzymes.  相似文献   

5.
Chitin deacetylase (CDA), the enzyme that catalyzes the hydrolysis of acetamido groups of GlcNAc in chitin, was purified from culture filtrate of the fungus Mortierella sp. DY-52 and characterized. The extracellular enzyme is likely to be a highly N-glycosylated protein with a pI of 4.2-4.8. Its apparent molecular weight was determined to be about 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 67 kDa by size-exclusion chromatography. The enzyme had an optimum pH of 6.0 and an optimum temperature of 60 °C. Enzyme activity was slightly inhibited by 1-10 mM Co(2+) and strongly inhibited by 10 mM Cu(2+). It required at least two GlcNAc residues for catalysis. When (GlcNAc)(6) was used as substrate, K(m) and V(max) were determined to be 1.1 mM and 54.6 μmol min(-1) respectively.  相似文献   

6.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

7.
Oviductal secretions include an ATPase (EC 3.6.1.3) that is transferred from the outer surface of the secretory cells to the surface of the ovulated oocyte. The enzyme has been purified and is a highly labile, very high molecular weight lipoprotein complex (greater than 4-10(6)). It consists of 47% protein and 53% lipid. Lipid composition is limited to phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The basic protein subunit has a molecular weight of 170 000. The enzyme exhibits many of the characteristics of ectoenzyme ATPase. The enzyme is Mg2+ or Ca2+ dependent; the Mg2+-ATPase has pH optima at 6.0 and 7.8 and the Ca2+-ATPase at 9.0. Substrate specificity is limited to ATP with lesser activity towards GTP, CTP, UPT and ADP. Km for ATP is 0.88 mM and the enzyme is inhibited at substrate concentrations greater than 3 mM ATP.  相似文献   

8.
A carbamoyl-phosphate synthase has been purified from mycelia of Phycomyces blakesleeanus NRRL 1555 (-). The molecular weight of the enzyme was estimated to be 188,000 by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed that the enzyme consists of two unequal subunits with molecular weights of 130,000 and 55,000. The purified enzyme has been shown to be highly unstable. The carbamoyl-phosphate synthase from Phycomyces uses ammonia and not L-glutamine as a primary N donor and does not require activation by N-acetyl-L-glutamate, but it does require free Mg2+ for maximal activity. Kinetic studies showed a hyperbolic behavior with respect to ammonia (Km 6.34 mM), bicarbonate (Km 10.5 mM) and ATP.2 Mg2+ (Km 0.93 mM). The optimum pH of the enzyme activity was 7.4-7.8. The Phycomyces carbamoyl-phosphate synthase showed a transition temperature at 38.5 degrees C. It was completely indifferent to ornithine, cysteine, glycine, IMP, dithiothreitol, glycerol, UMP, UDP and UTP. The enzyme was inhibited by reaction with 5 mM N-ethylmaleimide.  相似文献   

9.
Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).  相似文献   

10.
It is shown that in vitro the degradation of native and single-stranded DNA as well as the hydrolysis of ATP by purified recBC enzyme ceases 2-3 min after the start of the reaction. The presence of potassium ions (60-100 mM), bovine serum albumin (1 mg/ml) or protein from cell-free Escherichia coli extract (10 microgram/ml) prevents the cessation of the activity. Once the cessation has occurred, the activity of the enzyme can be completely restored by the addition of potassium ions, but not by bovine serum albumin. Sedimentation studies revealed that, in contrast to the active recBC enzyme, the 'silent' enzyme is no longer associated with substrate DNA of high molecular weight. On the basis of these results and other observations it is hypothesized that during the degradation of DNA in the absence of potassium ions or bovine serum albumin the recBC enzyme is subject to an alteration of its molecular conformation which results in an inactive form.  相似文献   

11.
The alpha-L-fucosidase from rat liver lysosomes was purified approximately 27,000-fold (from cytoplasmic extract) by a rapid procedure requiring only 7 h anf providing enzyme in a 20 per cent yield. The procedure is based upon affinity chromatography with agarose-epsilon-aminocaproyl-fucosamine. The isolated enzyme was found to be pure by a number of different analytical gel techniques and is essentially free of other lysosomal gylcosidases. The purified enzyme exhibits a positive periodic acid-Schiff stain, suggesting that it is a glycoprotein. The purified enzyme has a pH optimum of 5.7 to 5.9, a Vmax of 27 mumol/min/mg of protein, and a Km of 0.19 mM with p-nitrophenyl alpha-L-fucopyranoside as substrate. L-Fucose was the only possibly physiological effector of the enzyme which was identified; it exhibited a Ki of 1.6 mM, with p-nitrophenyl alpha-L-fucopyranoside as substrate. The enzyme has a subunit molecular weight of approximately 55,000 by Na dodecyl-SO4 electrophoresis in a variety of gel systems. The molecular weight of the native enzyme was indicated to be approximately 160,000 by sucrose density centrifugation, 300,000 by molecular sieve chromatography on Sephadex G-200, and 217,000 by sedimentation equilibrium centrifugation. The weight of evidence suggests that the enzyme is a tetramer. Incubation on the absence of sulfhydryl reagents under appropriate conditions generates a second alpha-L-fucosidase activity band on gels corresponding to a molecular weight of approximately 40,000 to 50,000. This result suggests that the subunit is relatively stable and may reassociate to form active enzyme. Alpha-L-Fucosidase requires a high concentration of protein and the presence of a sulfhydryl reagent for stabilization. It is rapidly inactivated by p-chloromercuriphenyl sulfonic acid, this inactivation being rapidly reversible by the addition of 10 mM 2-mercaptoethanol. The enzyme catalyzed the hydrolysis of 1 leads to 2, 1 leads to 3, and 1 leads to 4 fucosyl linkages and was found to be active on glycopeptides but not on native glycoproteins. The amino acid and carbohydrate composition of the enzyme was determined. The native enzyme contains the following sugars (residues per tetramer): fucose (3.5), mannose (32), galactose (8), glucose (9), glucosamine (32), and sialic acid (8). Rat liver lysosomal alpha-glucosidase, also produced in the rapid isolation procedure described herein, contained less than 0.1 residue of sialic acid per subunit.  相似文献   

12.
We have isolated D-myo-inositol 1:2-cyclic phosphate 2-inositolphosphohydrolase (EC 3.1.4.36) from human placenta. This enzyme catalyzes the conversion of inositol 1:2-cyclic phosphate to inositol 1-phosphate. The enzyme was purified 1300-fold to apparent homogeneity from the soluble fraction of human placenta. The enzyme requires Mn2+ or Mg2+ ions for activity, has an apparent Km for inositol 1:2-cyclic phosphate of 0.15 mM and forms 2.2 mumol of inositol 1-phosphate/min/mg protein. The enzyme does not utilize the cyclic esters of inositol polyphosphates as substrates. The molecular weight determined by gel filtration chromatography is approximately 55,000. Upon electrophoresis in polyacrylamide gels in sodium dodecyl sulfate, the molecular weight was found to be 29,000 both in the presence and absence of beta-mercaptoethanol. The enzyme was inhibited by inositol 2-phosphate (IC50 = 4 microM) and to a lesser degree by inositol 1-phosphate (IC50 = 2 mM) and inositol (IC50 = 4 mM). Zn2+ is a potent inhibitor of enzyme activity (IC50 = 10 microM). Neither Li+ nor Ca2+ had any effect on enzyme activity. This enzyme may serve to generate inositol from inositol cyclic phosphate metabolites produced by the phosphoinositide signaling pathway in cells.  相似文献   

13.
The reaction catalyzed by CTP:phosphocholine cytidylyltransferase in the reverse direction, i.e. the formation of CTP and phosphocholine from CDP-choline and pyrophosphate, is slightly faster than the reaction in the forward direction. The reverse reaction is optimal at 2 mM pyrophosphate and 6 mM Mg2+, in both fetal and adult preparations. The apparent substrate Km values for phosphocholine, CDP-choline, and pyrophosphate are similar in the fetal and adult forms of the enzyme. The enzyme activity is separated into two forms by gel filtration. The enzyme from adult lung exists as a high molecular weight species, ranging in size from 5 X 10(6) to 50 X 10(6). The enzyme from fetal lung exists as a 190,000 molecular weight species and is totally dependent upon added anionic phospholipid for activity in both the forward and reverse direction. The addition of phosphatidylglycerol gives maximal activity, while phosphatidylinositol or cardiolipin produce about 60 to 70% of the maximal activity. Enzyme activation is accompanied by an aggregation of the enzyme. A sonicated preparation of phosphatidylglycerol is a more efficient activator than a preparation mixed on a Vortex mixer (KA = 30 micronM) and also converts a larger proportion of enzyme from fetal lung into a high molecular weight species. The enzyme from adult lung can be dissociated into a form in fetal lung. The dissociated species can be converted back to a high molecular weight form in the presence of phosphatidylglycerol.  相似文献   

14.
An intracellular enzyme catalyzing the hydrolysis of sucrose-6-phosphate to glucose-6-phosphate and fructose has been identified in extracts of Streptococcusmutans 6715-10. The preparation was purified chromatographically and found to have an apparent molecular weight of 42,000. The enzyme has as a Km for sucrose-6-phosphate of 0.21 mM, a pH optimum of 7.1, is quite stable and requires no added cofactors or metal ions. Sucrose is a competitive inhibitor of sucrose-6-phosphate hydrolysis (Ki = 8. 12 mM). A previously described intracellular invertase copurifies with the enzyme and could not be separated from it by disc gel electrophoresis. It is concluded that intracellular invertase is a sucrose-6-phosphate hydrolase with a low catalytic activity for hydrolysis of sucrose.  相似文献   

15.
A procedure is described for the purification of 6-phosphogluconate dehydrogenase (6-phospho-D-gluconate:NADP oxidoreductase (decarboxylating) EC 1.1.1.44) from cell extracts of Streptococcus gaecalis. A 180-fold purification was achieved with an over-all yield of about 12% and an average specific activity of 14. The enzyme was homogeneous as determined by polyacrylamide gel electrophoresis, immunoelectrophoresis, and sedimentation equilibrium, studies. Its weight average molecular weight, as measured by sedimentation equilibrium, was 108,000 +/- 3,600. Other methods employed for molecular weight determinations gave values that ranged between 106,000 and 115,000. An analysis of the enzyme by sodium dodecyl sulfate polyacrylamide gel electrophoresis showed it to be a dimer composed of subunits having equal molecular weight. The amino acid composition of the streptococcal enzyme is reported. The apparent Km values for NADP and 6-phosphogluconate were calculated from kinetic data and found to be 0.015 mM and 0.024 mM, respectively. Kinetic studies also indicated that the binding of one substrate did not affect the apparent affinity of the enzyme for the other substrate.  相似文献   

16.
Aspartokinase from Streptococcus mutans BHT was purified to homogeneity and characterized. The molecular weight of the native enzyme was estimated to be 242,000 by gel filtration. Cross-linking of aspartokinase with dimethyl suberimidate and polyacrylamide gel electrophoresis of the amidinated enzyme in the presence of sodium dodecyl sulfate showed the enzyme to be composed of six identical subunits with a molecular wieght of 40,000. The optimal pH range for enzyme activity was 6.5 to 8.5. The apparent Michaelis-Menten constants for aspartate and ATP were 5.5 and 2.2 mM, respectively. The enzyme was stable within the temperature range of 10 to 35 degrees C. Aspartokinase was not feedback inhibited by individual amino acids, but was concertedly inhibited by L-lysine and L-threonine (93.5% inhibition at 10 mM each). The inhibition was noncompetitive with respect to aspartate (Ki = 10 mM) and mixed with respect to ATP. L-Threonine methyl ester and L-threonine amide were able to substitute for L-threonine in feedback inhibition, but the requirement for L-lysine uas strict. The feedback inhibitor pair protected the enzyme against heat denaturation. Aspartokinase synthesis was repressed by L-threonine; this repression was enhanced by L-lysine, but was slightly attenuated by L-methionine.  相似文献   

17.
1,6-alpha-D-Mannosidase from Aspergillus phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 74 kDa by SDS-PAGE and 81 kDa by native-PAGE. The isoelectric point was 4.6. 1,6-alpha-D-Mannosidase had a temperature optimum of 60 degrees C, a pH optimum of 4.0-4.5, a K(m) of 14 mM with alpha-D-Manp-(1-->6)-D-Manp as substrate. It was strongly inhibited by Mn(2+) and did not need Ca(2+) or any other metal cofactor of those tested. The enzyme cleaves specifically (1-->6)-linked mannobiose and has no activity towards any other linkages, p-nitrophenyl-alpha-D-mannopyranoside or baker's yeast mannan. 1,3(1,6)-alpha-D-Mannosidase from A. phoenicis was purified by anion-exchange chromatography, chromatofocussing and size-exclusion chromatography. The apparent molecular weight was 97 kDa by SDS-PAGE and 110 kDa by native-PAGE. The 1,3(1,6)-alpha-D-mannosidase enzyme existed as two charge isomers or isoforms. The isoelectric points of these were 4.3 and 4.8 by isoelectric focussing. It cleaves alpha-D-Manp-(1-->3)-D-Manp 10 times faster than alpha-D-Manp-(1-->6)-D-Manp, has very low activity towards p-nitrophenyl-alpha-D-mannopyranoside and baker's yeast mannan, and no activity towards alpha-D-Manp-(1-->2)-D-Manp. The activity towards (1-->3)-linked mannobiose is strongly activated by 1mM Ca(2+) and inhibited by 10mM EDTA, while (1-->6)-activity is unaffected, indicating that the two activities may be associated with different polypeptides. It is also possible that one polypeptide may have two active sites catalysing distinct activities.  相似文献   

18.
1) Catalase from green leaves of Lens culinaris (lentils) was investigated with respect to isoenzyme patterns. In contrast to other plants, which have been reported to contain multiple forms of catalase, only one form of this enzyme was revealed when crude extracts were subjected to starch gel electrophoresis or to polyacrylamide disc-gel electrophoresis. Furthermore, catalases from leaves, stems and cotyledons were electrophoretically identical. 2) The leaf enzyme has been purified by conventional methods to apparent homogeneity. It has a molecular weight of 225 000 (ultracentrifuge) and is composed of four identical subunits of molecular weight 54 000 (sodium dodecylsulphate gel electrophoresis). The ratio A280/A405 of the pure enzyme was found to be 1.5. The isoelectric point is at pH 5.5. The enzyme, very labile at pH-values below 7.0, is stable in Tris chloride and potassium phosphate buffers between pH 7.5 and 9.5. It is slowly inactivated by 1mM dithiothreitol and is rapidly inactivated by 1mM mercaptoethanol. 3) The catalase was shown to be the major protein component of the peroxisomal matrix. It could not be detected at the membranes of the leaf peroxisomes.  相似文献   

19.
Betaine-homocysteine methyl transferase (BHMT) from Aphanothece halophytica was purified to homogeneity by hydroxyapatite, DEAE-Sepharose CL-6B and Sephadex G-200 column chromatography. A 24-fold purification and 11% overall yield were achieved with a specific activity of 595 nmol h−1 mg−1. The subunit molecular weight was determined to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the native enzyme was found to have a molecular weight of 350 kDa, suggesting an octameric structure of the enzyme. The enzyme shows optimum activity at 37°C, pH 7.5. The apparent Km values for glycinebetaine and L-homocysteine were 4.3 mM and 1.3 mM, respectively. The enzyme was 70% inactivated by 5 mM dimethylglycine whereas the same concentration of sarcosine slightly inactivated the enzyme. Two analogs of glycinebetaine were also tested for enzyme inactivation and it was found that 5 mM choline inactivated 60% of the enzyme activity and 2.5 mM betaine aldehyde completely abolished the enzyme activity. NaCl at 200 mM or higher also completely inactivated the enzyme. Received: 6 December 2000 / Accepted: 10 January 2001  相似文献   

20.
Phosphoenolpyruvate (PEP) carboxylases (PC) were purified from a wild strain and an aspartate-producing mutant of Brevibacterium flavum to electrophoretic homogeneity. The molecular weights of the enzymes were determined to be 4.1 X 10(5) by the gel-filtration technique. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme gave only one protein band with a molecular weight of 1.07 X 10(5). The enzyme was labile and stabilized by substrate PEP, activators, metallic cofactors, an allosteric inhibitor and ammonium sulfate. The mechanism for the PC reaction was rapid equilibrium random Bi Bi with a dead end complex, enzyme-bicarbonate-Pi. The KmS for PEP and bicarbonate were 2.5 and 0.63 mM, respectively, and the apparent KmS were not affected by the secondary substrate concentrations. Dissociation constants for Pi of enzyme-Pi and the dead end complex were 5.0 and 16 mM, respectively. Aspartate inhibition was completely competitive with both the substrates, PEP and bicarbonate, with an inhibitor constant of 0.044 mM. An activator, acetyl-CoA, did not alter the apparent Km for bicarbonate but decreased that for PEP. The activator constants for the enzyme-PEP complex and free enzyme were 6.3 and 40 microM, respectively. Double reciprocal plots of reaction rate against PEP concentration were not linear at lower PEP concentrations. Hill coefficients for PEP were 1.6 in the absence of any effectors, 1.0 in the presence of acetyl-CoA, and 2.3 in the presence of aspartate. As to the mutant enzyme, only the inhibitor constant for aspartate was increased, being 0.18 mM, but other constants, coefficients, as described above, and specific activity were almost the same as those of the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号