首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ventilatory response of newborn lambs to hypoxemia was evaluated in two groups of seven awake lambs studied at 2 and 7 days of life. Minute ventilation (VE) and airway occlusion pressure (P0.1) were monitored as the animals were exposed in sequence to room air, 12% O2 (15 min), 7% O2 (15 min), and room air. On 12 and 7% O2, 2-day-old lambs experienced a brisk hyperventilation followed by a VE depression, previously described in newborns of other species (diphasic response). The 7-day-old lambs had a clear diphasic VE response only on 7% O2 breathing. In the 2-day-old lambs, at the time of the relative VE depression to 12% O2, the respiratory centers showed a persisting responsiveness to further hypoxia; switching to 7% O2 caused a brisk increase in VE and P0.1 of 70 and 130%, respectively, which was followed again by a VE depression. The magnitude of the immediate VE response to hypoxia, taken as an index of the chemoreceptor strength, was inversely related to the magnitude of the VE depression (R = 0.81, P less than 0.001). It was concluded that 1) lambs as well as other neonates have an age-related diphasic VE response to hypoxia; 2) at the time of the VE depression, the respiratory centers maintain their responsiveness to further acute hypoxia; and 3) the weakness of the chemoreceptors in the newborn is a major determinant of the diphasic response.  相似文献   

2.
Exponential and diphasic ventilatory response to hypoxia in conscious lambs   总被引:2,自引:0,他引:2  
This study was undertaken to test the hypothesis that in the neonate the hypoxic chemoreflex drive adapts to steady-state hypoxia but not to progressive hypoxia. First we have compared the ventilatory (VE) response of 2-day-old conscious lambs to steady-state hypoxia with their response to progressive hypoxia. Second, we have quantified the chemoreceptor excitatory function operating at the end of each period of hypoxia by studying the immediate VE response to the withdrawal of the hypoxic stimulus. Lambs responded to steady-state hypoxia [fractional concentration of inspired O2 (FIO2) = 0.08] by a diphasic VE response but responded to progressive hypoxia (FIO2 0.21-0.08) by an exponential VE increase. Hyperventilation in steady-state hypoxia was transient; VE increased immediately from 532 to a mean peak response of 712 ml X kg-1 X min-1 and decreased to 595 ml X kg-1. min-1 within 10 min. With progressive hypoxia, VE increased within 13 min from 514 to 705 ml X kg-1 X min-1. At the end of steady-state and progressive hypoxia the abrupt withdrawal of the hypoxic drive caused an instantaneous VE decrease to 390 and 399 ml X kg-1 X min-1, respectively; the VE decrease was respectively 306 and 205 ml X kg-1 X min-1 (P less than 0.05). This demonstrates that during steady-state hypoxia the lambs had suffered a loss of one third of the chemoreceptor excitatory function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Individual effects of hypoxic hypoxia and hypercapnia on the cerebral circulation are well described, but data on their combined effects are conflicting. We measured the effect of hypoxic hypoxia on cerebral blood flow (CBF) and cerebral O2 consumption during normocapnia (arterial PCO2 = 33 +/- 2 Torr) and during hypercapnia (60 +/- 2 Torr) in seven pentobarbital-anesthetized lambs. Analysis of variance showed that neither the magnitude of the hypoxic CBF response nor cerebral O2 consumption was significantly related to the level of arterial PCO2. To determine whether hypoxic cerebral vasodilation during hypercapnia was restricted by reflex sympathetic stimulation we studied an additional six hypercapnic anesthetized lambs before and after bilateral removal of the superior cervical ganglion. Sympathectomy had no effect on base-line CBF during hypercapnia or on the CBF response to hypoxic hypoxia. We conclude that the effects of hypoxic hypoxia on CBF and cerebral O2 consumption are not significantly altered by moderate hypercapnia in the anesthetized lamb. Furthermore, we found no evidence that hypercapnia results in a reflex increase in sympathetic tone that interferes with the ability of cerebral vessels to dilate during hypoxic hypoxia.  相似文献   

4.
To evaluatewhether changes in extracellular glutamate (Glu) levels in the centralnervous system could explain the depressed hypoxic ventilatory responsein hypothermic neonates, 12 anesthetized, paralyzed, and mechanicallyventilated piglets <7 days old were studied. The Glu levels in thenucleus tractus solitarius obtained by microdialysis, minute phrenicoutput (MPO), O2 consumption, arterial blood pressure, heart rate, and arterial blood gases weremeasured in room air and during 15 min of isocapnic hypoxia (inspiredO2 fraction = 0.10) at braintemperatures of 39.0 ± 0.5°C [normothermia (NT)]and 35.0 ± 0.5°C [hypothermia (HT)]. During NT, MPO increased significantly during hypoxia and remained above baseline. However, during HT, there was a marked decrease in MPOduring hypoxia (NT vs. HT, P < 0.03). Glu levels increased significantly in hypoxia during NT;however, this increase was eliminated during HT(P < 0.02). A significant linearcorrelation was observed between the changes in MPO and Glu levelsduring hypoxia (r = 0.61, P < 0.0001). Changes in pH, arterialPO2, O2 consumption, arterial bloodpressure, and heart rate during hypoxia were not different between theNT and HT groups. These results suggest that the depressed ventilatoryresponse to hypoxia observed during HT is centrally mediated and inpart related to a decrease in Glu concentration in the nucleus tractussolitarius.

  相似文献   

5.
This study was undertaken to measure the neonate's response to CO-induced hypoxia in the first 10 days of life. CO breathing was used to induce hypoxia because CO causes tissue hypoxia with no or minimal chemoreceptor stimulation. An inspired gas mixture of 0.25 to 0.5% CO in air was used to raise the blood carboxyhemoglobin (HbCO) progressively from 0 to 60% over approximately 20 min. The study, conducted in awake conscious lambs aged 2 and 10 days, consisted in measuring the response of ventilation and the change in arterial blood gases during the rise of HbCO. The results showed that the 2- and 10-day-old lambs tolerated very high HbCO levels without an increase in minute ventilation (VE) and without metabolic acidosis. At both ages, HbCO caused no VE change until HbCO levels rose to between 45 and 50% after which the VE change was exponential in some animals but minimal in others. The VE change was brought about by a rise in tidal volume and respiratory frequency. During the period of maturation from 2 to 10 days, there was a small shift to the right in the VE-HbCO response. In the 10-day-old lambs the VE response to high HbCO was greater than that of the 2-day-olds because of the lambs' higher respiratory frequency response. Six of the 10-day-old lambs but only two of the 2-day-old lambs showed a hypoxic tachypnea to HbCO of 55-65%. None of the lambs developed periodic breathing, dysrhythmic breathing, or recurrent apneas with an HbCO level as high as 60%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
In this study we have evaluated the role of the peripheral chemoreceptors in the ventilatory response to caffeine at a dose currently used in human infants for treatment of central apneas (10 mg/kg). Twelve lambs were studied; six had carotid body denervation (CBD) and six had a sham denervation (intact). The denervation was done the 2nd wk of life, and the study of the response to caffeine infusion was carried out at a mean age of 82 days. The awake and nonsedated animals received 10 mg/kg of caffeine, and caffeine blood levels were, respectively, 8.8 and 9.0 mg/l in the intact and in the CBD lambs. The intact lambs responded to caffeine by a significant immediate increase in minute ventilation (VE) of 46% from 274 to 400 ml X min-1 X kg-1 (P less than 0.001), 1 min after caffeine infusion. This response rapidly faded, but VE was still increased at 2 h, 314 ml X min-1 X kg-1. The increase in ventilation was brought about by a change in mean inspiratory flow (VT/TI), which increased from 9.9 to 14.0 ml X s-1 X kg-1 within 1 min (P less than 0.01); VT/TI was still increased at 11.2 ml X s-1 X kg-1 2 h later. In contrast, for the CBD lambs there was no response to caffeine infusion as measured by VE or VT/TI. We conclude that bolus caffeine infusion produces a rapid response in VE followed by a fall in VE that remained above base line until at least 2 h postinfusion, and the intact chemoreceptor function appears as an essential mediator for these increases in ventilation, since the peripheral chemodenervation has completely abolished the VE response to this particular dose of caffeine.  相似文献   

8.
To determine the role of postinspiratory inspiratory activity of the diaphragm in the biphasic ventilatory response to hypoxia in unanesthetized rats, we examined diaphragmatic activity at its peak (DI), at the end of expiration (DE), and ventilation in adult unanesthetized rats during poikilocapnic hypoxia (10 % O2) sustained for 20 min. Hypoxia induced an initial increase in ventilation followed by a consistent decline. Tidal volume (VT), frequency of breathing (fR), DI and DE at first increased, then VT and DE decreased, while fR and DI remained enhanced. Phasic activation of the diaphragm (DI-DE) increased significantly at 10, 15 and 20 min of hypoxia. These results indicate that 1) the ventilatory response of unanesthetized rats to sustained hypoxia has a typical biphasic character and 2) the increased end-expiratory activity of the diaphragm limits its phasic inspiratory activation, but this increase cannot explain the secondary decline in tidal volume and ventilation.  相似文献   

9.
Moss, T. J., M. G. Davey, G. J. McCrabb, and R. Harding.Development of ventilatory responsiveness to progressive hypoxia and hypercapnia in low-birth-weight lambs. J. Appl.Physiol. 81(4): 1555-1561, 1996.Our aim was todetermine the effects of low birth weight on ventilatory responses toprogressive hypoxia and hypercapnia during early postnatal life. Sevenlow-birth-weight (2.7 ± 0.3 kg) and five normal-birth-weight (4.8 ± 0.2 kg) lambs, all born at term, underwent weekly rebreathingtests during wakefulness while arterialPO2,PCO2, and pH were measured. Hypoxicventilatory responsiveness (HOVR; percent increase in ventilation whenarterial PO2 fell to 60% of resting values) increased in normal lambs from 86.6 ± 7.1% atweek 1 to 227.4 ± 24.9% atweek 6. In low-birth-weight lambs,HOVR was not significantly different at week1 (60.1 ± 18.7%) from that of normal lambs but didnot increase with postnatal age (56.6 ± 19.3% atweek 6). HOVR of all lambs at 6 wkwas significantly correlated with birth weight(r2 = 0.8).Hypercapnic ventilatory responsiveness (gradient of ventilation vs.arterial PCO2) did not change withage and was not significantly different between groups [84.7 ± 7.5 (low-birth-weight lambs) vs. 89.4 ± 6.6 ml · min1 · kg1 · mmHg1(normal lambs)]. We conclude that intrauterine conditions that impair fetal growth lead to the failure of HOVR to increase with age.

  相似文献   

10.
Somatostatin inhibits the ventilatory response to hypoxia in humans   总被引:2,自引:0,他引:2  
The effects of a 90-min infusion of somatostatin (1 mg/h) on ventilation and the ventilatory responses to hypoxia and hypercapnia were studied in six normal adult males. Minute ventilation (VE) was measured with inductance plethysmography, arterial 02 saturation (SaO2) was measured with ear oximetry, and arterial PCO2 (Paco2) was estimated with a transcutaneous CO2 electrode. The steady-state ventilatory response to hypoxia (delta VE/delta SaO2) was measured in subjects breathing 10.5% O2 in an open circuit while isocapnia was maintained by the addition of CO2. The hypercapnic response (delta VE/delta PaCO2) was measured in subjects breathing first 5% and then 7.5% CO2 (in 52-55% O2). Somatostatin greatly attenuated the hypoxic response (control mean -790 ml x min-1.%SaO2 -1, somatostatin mean -120 ml x min-1.%SaO2 -1; P less than 0.01), caused a small fall in resting ventilation (mean % fall - 11%), but did not affect the hypercapnic response. In three of the subjects progressive ventilatory responses (using rebreathing techniques, dry gas meter, and end-tidal Pco2 analysis) and overall metabolism were measured. Somatostatin caused similar changes (mean fall in hypoxic response -73%; no change in hypercapnic response) and did not alter overall O2 consumption nor CO2 production. These results show an hitherto-unsuspected inhibitory potential of this neuropeptide on the control of breathing; the sparing of the hypercapnic response is suggestive of an action on the carotid body but does not exclude a central effect.  相似文献   

11.
Recovery of the ventilatory response to hypoxia in normal adults   总被引:10,自引:0,他引:10  
Recovery of the initial ventilatory response to hypoxia was examined after the ventilatory response had declined during sustained hypoxia. Normal young adults were exposed to two consecutive 25-min periods of sustained isocapnic hypoxia (80% O2 saturation in arterial blood), separated by varying interludes of room air breathing or an increased inspired O2 fraction (FIO2). The decline in the hypoxic ventilatory response during the 1st 25 min of hypoxia was not restored after a 7-min interlude of room air breathing; inspired ventilation (VI) at the end of the first hypoxic period was not different from VI at the beginning and end of the second hypoxic period. After a 15-min interlude of room air breathing, the hypoxic ventilatory response had begun to recover. With a 60-min interlude of room air breathing, recovery was complete; VI during the second hypoxic exposure matched VI during the first hypoxic period. Ventilatory recovery was accelerated by breathing supplemental O2. With a 15-min interlude of 0.3 FIO2 or 7 min of 1.0 FIO2, VI of the first and second hypoxic periods were equivalent. Both the decline and recovery of the hypoxic ventilatory response were related to alterations in tidal volume and mean inspiratory flow (VT/TI), with little alteration in respiratory timing. We conclude that the mechanism of the decline in the ventilatory response with sustained hypoxia may require up to 1 h for complete reversal and that the restoration is O2 sensitive.  相似文献   

12.
Dynamics of the ventilatory response to central hypoxia in cats   总被引:4,自引:0,他引:4  
The dynamics of the effect of central hypoxia on ventilation were investigated by the technique of artificial perfusion of the brain stem in alpha-chloralose-urethan-anesthetized cats. A two-channel roller pump and a four-way valve allowed switching the gas exchanger into and out of the extracorporeal circuit which controlled the brain stem perfusion. When isocapnic hypoxia (arterial PO2 range 18-59 Torr) was limited to the brain stem, a decline in ventilation was consistently found. In 12 cats 47 steps into and 48 steps out of central hypoxia were made. The ventilatory response was fitted using least squares with a model that consisted of a latency followed by a single-exponential function. The latencies for the steps into and out of hypoxia were not significantly different (P = 0.14) and were 32.3 +/- 4.0 and 25.1 +/- 3.6 (SE) s, respectively. The time constant for the steps into hypoxia (149.7 +/- 8.5 s) was significantly longer (P = 0.0002) than for the steps out of hypoxia (105.5 +/- 10.1 s). The time constants for the increase and decrease in ventilation after step changes in the central arterial PCO2 found in a previous study (J. Appl. Physiol. 66: 2168-2172, 1989) were not significantly different (P greater than 0.2) from the corresponding time constants in this study (for 7 cats common to both studies). Theories of the mechanisms behind hypoxic ventilatory decline need to account for the long latency, the similarity between the time constants for the ventilatory response to O2 and CO2, and the differences between the time constants for increasing and decreasing ventilation.  相似文献   

13.
14.
15.
In adult humans the ventilatory response to sustained hypoxia (VRSH) is biphasic, characterized by an initial brisk increase, due to peripheral chemoreceptor (PC) stimulation, followed by a decline attributed to central depressant action of hypoxia. To study the effects of selective stimulation of PC on the ventilatory response pattern to hypoxia, the VRSH was evaluated after pretreatment with almitrine (A), a PC stimulant. Eight subjects were pretreated with A (75 mg po) or placebo (P) on 2 days in a single-blind manner. Two hours after drug administration, they breathed, in succession, room air (10 min), O2 (5 min), room air (5 min), hypoxia [25 min, arterial O2 saturation (SaO2) = 80%], O2 (5 min), and room air (5 min). End-tidal CO2 was kept constant at the normoxic base-line values. Inspiratory minute ventilation (VI) and breathing patterns were measured over the last 2 min of each period and during minutes 3-5 of hypoxia, and nadirs in VI were assessed just before and after O2 exposure. Independent of the day, the VRSH was biphasic. With P and A pretreatment, early hypoxia increased VI 4.6 +/- 1 and 14.2 +/- 1 (SE) l/min, respectively, from values obtained during the preceding room-air period. On A day the hypoxic ventilatory decline was significantly larger than that on P day, and on both days the decline was a constant fraction of the acute hypoxic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We studied the ventilatory response to hypoxia in 11 unanesthetized newborn kittens (n = 54) between 2 and 36 days of age by use of a flow-through system. During quiet sleep, with a decrease in inspired O2 fraction from 21 to 10%, minute ventilation increased from 0.828 +/- 0.029 to 1.166 +/- 0.047 l.min-1.kg-1 (P less than 0.001) and then decreased to 0.929 +/- 0.043 by 10 min of hypoxia. The late decrease in ventilation during hypoxia was related to a decrease in tidal volume (P less than 0.001). Respiratory frequency increased from 47 +/- 1 to 56 +/- 2 breaths/min, and integrated diaphragmatic activity increased from 14.9 +/- 0.9 to 20.2 +/- 1.4 arbitrary units; both remained elevated during hypoxia (P less than 0.001). Younger kittens (less than 10 days) had a greater decrease in ventilation than older kittens. These results suggest that the late decrease in ventilation during hypoxia in the newborn kitten is not central but is due to a peripheral mechanism located in the lungs or respiratory pump and affecting tidal volume primarily. We speculate that either pulmonary bronchoconstriction or mechanical uncoupling of diaphragm and chest wall may be involved.  相似文献   

17.
Although endoscopic studies in adult humans have suggested that laryngeal closure can limit alveolar ventilation during nasal intermittent positive pressure ventilation (nIPPV), there are no available data regarding glottal muscle activity during nIPPV. In addition, laryngeal behavior during nIPPV has not been investigated in neonates. The aim of the present study was to assess laryngeal muscle response to nIPPV in nonsedated newborn lambs. Nine newborn lambs were instrumented for recording states of alertness, electrical activity [electromyograph (EMG)] of glottal constrictor (thyroarytenoid, TA) and dilator (cricothyroid, CT) muscles, EMG of the diaphragm (Dia), and mask and tracheal pressures. nIPPV in pressure support (PS) and volume control (VC) modes was delivered to the lambs via a nasal mask. Results show that increasing nIPPV during wakefulness and quiet sleep led to a progressive disappearance of Dia and CT EMG and to the appearance and subsequent increase in TA EMG during inspiration, together with an increase in trans-upper airway pressure (TUAP). On rare occasions, transmission of nIPPV through the glottis was prevented by complete, active glottal closure, a phenomenon more frequent during active sleep epochs, when irregular bursts of TA EMG were observed. In conclusion, results of the present study suggest that active glottal closure develops with nIPPV in nonsedated lambs, especially in the VC mode. Our observations further suggest that such closure can limit lung ventilation when raising nIPPV in neonates.  相似文献   

18.
We tested whether hyperbaric O2 (HBO) has an adverse effect on the hypoxic ventilatory drive. Four groups of rats were exposed for 550 min to O2 at 1.67, 1.90, and 2.15 ATA and to air at 1.90 ATA, respectively. Ventilatory parameters (frequency, tidal volume, and minute ventilation) were measured using whole-body plethysmography, before the hyperbaric exposure, immediately after the exposure, and up to 20 days after the exposure. Resting ventilation was not affected after exposure at 1.90 ATA to air or at 1.67 ATA to O2. HBO at 1.90 and 2.15 ATA caused a reduction of frequency and an elevation of tidal volume at different inspired gases: air, 5% CO2 balance O2, 80% O2, and 4.5% O2. However, minute ventilation on the day after the hyperoxic exposure was not different from the control at either air, 5% CO2, or 80% O2 but was markedly attenuated on the first three breaths at 4.5% O2. The hypoxic ventilation decreased to 48 +/- 13 (SD) and 32 + 11% after 1.90 and 2.15 ATA, respectively. The ventilatory parameters recovered in the days after HBO. We conclude that HBO reversibly depresses the hypoxic ventilatory drive, most probably by a direct effect on the carotid O2 chemoreceptors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号