首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vertebrate skeletal fast-twitch muscle myosin subfragment 1 is comprised of a heavy polypeptide chain of 95,000 daltons and one alkali light chain of either 21,000 daltons (A1) or 16,500 daltons (A2). In the present study, the heavy chain of subfragment 1 has been separated from the alkali light chain under nondenaturing conditions resembling those in vivo. The heavy chain exhibits the same ATPase activity as myosin subfragment 1, indicating that the heavy chain alone contains the catalytic site for ATP hydrolysis and that the alkali light chains are nonessential for activity. The free heavy chain associates readily at 4 degrees C or 37 degrees C with free A1 or A2 to form the subfragment 1 isozymes SF1(A1) or SF1(A2) respectively. Actin activates the MgATPase activity of the heavy chain in the same manner as occurs with the native isozyme, indicating that the heavy chain possesses the actin binding domain.  相似文献   

2.
B E Mathern  M Burke 《Biochemistry》1986,25(4):884-889
The substructure and the thermal stability of the subunit interactions of bovine cardiac myosin subfragment 1 (SF1) have been examined. The results are in agreement with previous reports that the cardiac protein is cleaved in a very similar manner [Flink, I. L., & Morkin, E. (1982) Biophys. J. 37, 34; Korner, M., Thiem, N. V., Cardinaud, R., & Lacombe, G. (1983) Biochemistry 22, 5843-5847] but at a much faster rate [Applegate, D., Azarcon, A., & Reisler, E. (1984) Biochemistry 23, 6626-6630] than the skeletal protein. Additionally, it is found that the long-lived, steady-state intermediates formed by these proteins with MgATP at high ionic strength differ in their susceptibilities to tryptic attack especially at the 27K/50K junction of the associated heavy chains, suggesting a different conformation for these intermediates of the cardiac and skeletal SF1's. The thermal stability of the subunit interactions under conditions approaching the physiological state was examined by thermal ion-exchange chromatography of cardiac SF1 at 39.5 degrees C in the presence of MgATP. This results in the separation of part of the protein as the isolated heavy chain which is found to exhibit high levels of ATPase activity in the absence and presence of actin. Tryptic digestion of cardiac SF1 prior to thermal ion-exchange chromatography produces greater dissociation, with the heavy chain in this case being isolated as a complex of 27K, 50K, and 18-20K fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The formation of hybrid myosin and subfragment 1 species by incubation of these proteins with free alkali light chains at physiological ionic and temperature conditions is described. Exchange of bound alkali light chain on myosin by free alkali light chains under these conditions is readily demonstrated from the subunit composition of the isolated myosin. Therefore, the light chain exchange previously described for the one-headed subfragment 1 [Sivaramakrishnan, M., & Burke, M (1981) J. Biol. Chem. 256, 2607--2610] also occurs in the two-headed myosin molecule. It is found than the isozyme to hybrid transformation is dependent on both the temperature and the ionic strength of the incubation mixture but is relatively independent of pH in the range 6.5--8.0. A comparison of the SF1(A1) leads to SF1(A2)h system with the SF1(A2) leads to SF1(A1)h system indicates that more hybrid is formed in the latter case. With the assumption that hybrid formation reflects the degree of reversible dissociation exhibited by the isozyme, under the particular experimental condition employed, the data signify that the subunit interactions in the two isozymes are not identical and that the heavy chain--A1 interactions are significantly more stable that the heavy chain--A2 ones. An examination of the ATPase properties of the thermal hybrids in the presence and absence of actin indicates close similarities to their corresponding "native" isozymic counterparts.  相似文献   

4.
Limited tryptic proteolysis of S-1 (A1+A2) or S-1 (A1) and S-1 (A2) converts the heavy chain into 3 fragments of Mr = 27K-50K-20K. As a result the actin-stimulated ATPase activity of the fragmented heads is lost. When the digestion is performed using the complex F-actin-S-1, this ATPase activity is completely preserved and the heavy chain is split into only 2 fragments of Mr = 27K–70K. The specific protection by F-actin of the -COOH terminal region of the heavy chain at the joint 50K-20K against tryptic cleavage and loss of activity suggests that this part of the head can be involved in actin binding site and/or Mg2+ ATP hydrolysis by the acto-S-1 complex.  相似文献   

5.
Modification of the free alkali light chains of myosin by iodoacetylation results in a much lower extent of exchange into myosin subfragment 1 by the thermal hybridization procedure (Burke, M., and Sivaramakrishnan, M. (1981) Biochemistry 20, 5908-5913). As reported by others (Wagner, P. D., and Stone, D. B. (1983) J. Biol. Chem. 258, 8876-8882), free alkali light chains modified by iodoacetate at their single sulfhydryl residue exhibit minimal exchange into intact myosin. However, when unmodified alkali light chain is used to probe for exchange, close to the theoretical limit of exchange is observed for subfragment 1, and significant levels of exchange are found for myosin. It appears that modification of the free alkali light chain alters the structure of the protein, and this causes either a marked reduction in its affinity for the heavy chain or in its ability to enter the light chain binding site. This conclusion is supported by tryptic digestions done on the unmodified and modified free light chains where it is found that the latter is degraded at a much faster rate, indicating a more open structure for the modified protein. The observation that alkali light chain exchanges into myosin when unmodified alkali light chains are used indicates that the presence of the associated 5,5'-dithiobis-(2-nitrobenzoic acid) light chains does not preclude the reversible dissociation of this subunit from myosin under ionic and temperature conditions approaching the physiological state.  相似文献   

6.
The K+-EDTA-activated ATPase activity of chymotryptic myosin subfragment-1 (S-1) decreased by 85-90% when S-1 was incubated over a 2-h period at 35 degrees C. Addition of F-actin, ATP, or ATP analogs, such as ADP or PPi, to S-1 before incubation at 35 degrees C prevented the loss of ATPase activity. The decrease in ATPase activity was also accompanied by changes in tryptic sensitivity. Instead of the normal peptide pattern--which is comprised of three heavy chain fragments (27K, 50K, and 20K)--only two fragments (27K and 20K) appeared on the sodium dodecyl sulfate-gel electrophoregram after limited tryptic digestion of thermally treated S-1. Addition of any ligand--e.g. ATP, ADP, pyrophosphate, or actin--which prevented the loss of ATPase activity during incubation at 35 degrees C also prevented the observed change in the tryptic peptide pattern of S-1. Tryptic digested S-1, whose heavy chain has been cleaved to 27K, 50K, and 20K fragments, also lost its ATPase activity upon mild heat treatment. The heat-treated trypsin-digested S-1 was subjected to a second tryptic digestion, which resulted in the disappearance of the 50K fragment, while the 50K fragment of tryptic S-1 not subjected to heat treatment was not susceptible to additional tryptic hydrolysis. The results indicate that the structural changes, that take place specifically in the 50K region of S-1 upon mild heat treatment, lead to both the loss of the ATPase activity and the changed tryptic sensitivity of S-1.  相似文献   

7.
When myosin chymotryptic subfragment-1 was treated with dimethyl-suberimidate or dithiobis (succinimidylpropionate) under nearly physiological ionic conditions, the alkali light chains A1 and A2 were selectively and intramolecularly cross-linked to the 95K heavy chain. Experimental conditions were developed with both reagents for optimal production of A1 and A2-containing dimers. After conversion of reversibly cross-linked S-1 (A1+A2) into (27K-50K-20K)-S-1 derivative by restricted tryptic proteolysis, the light chains were found to be attached to the NH2-terminal 27K segment of the heavy chain.  相似文献   

8.
The heavy chain of myosin subfragment-1 prepared by chymotrypsin treatment had a molecular weight of about 96 K. It was split into 26 K, 50K, and 21 K fragments on trypsin treatment. The effect of actin binding on the susceptibilities of the junctions between 26 K and 50 K and between 50 K and 21 K, and on that of alkali light chain 1 to trypsin was studied. The addition of actin increased the viscosity of the solution, and the apparent activity of trypsin decreased. We estimated this decrease as 35% by measuring the degradation of gamma-globin heavy chain, which is known not to interact with actin and subfragment-1 but is known to be susceptible to trypsin, in actin-subfragment-1 solution. Taking this value into consideration, we concluded that the 26 K-50 K junction became 5 times more and the 50 K-21 K junction became 3 times less susceptible to tryptic attack upon the binding of actin. We also observed that alkali light chain 1 became resistant to trypsin upon the binding of actin to subfragment-1. The relation between this conformational change in subfragment-1 and the cyclic interaction of subfragment-1 with actin and ATP is discussed.  相似文献   

9.
The photoprobe 3'(2')-O-(4-benzoyl)benzoyladenosine 5'-triphosphate (Bz2ATP) was used to characterize the nucleotide-binding site of myosin subfragment 1 (SF1). Improved synthesis and purification of Bz2ATP are reported. 1H NMR and ultraviolet spectroscopy show that Bz2ATP is a 60:40 mixture of the 3'(2')-ribose isomers and that the epsilon M261 is 41,000 M-1 cm-1. Bz2ATP is hydrolyzed by SF1 comparably to ATP in the presence of actin or K+, NH4+, or Mg2+ ions; and the product, Bz2ADP, has a single binding site on SF1 (K'a = 3.0 X 10(5) M-1). [3H]Bz2ATP was photoincorporated into SF1 with concomitant loss of K+-EDTA-ATPase activity. Analysis of photolabeled SF1 showed that the three major tryptic peptides (23, 50, and 20 kDa) of the heavy chain fragment and the alkali light chains were labeled. The presence of ATP during irradiation protected only the 50-kDa peptide, indicating that the other peptides were nonspecifically labeled. If Bz2ATP was first trapped on SF1 by cross-linking the reactive thiols, SH1 and SH2, with p-phenylenedimaleimide, only the 50-kDa tryptic peptide was labeled. These results confirm and extend previous observations that [3H]Bz2ATP trapped on SF1 by cobalt(III) phenanthroline photolabeled the same 50-kDa peptide (Mahmood, R., and Yount, R.G. (1984) J. Biol. Chem. 259, 12956-12959). Thus, the 50-kDa peptide is labeled with or without thiol cross-linking, indicating that the relative position of SH1 and SH2 does not affect the labeling pattern.  相似文献   

10.
3'-O-(4-Benzoyl)benzoyl-ATP (Bz2ATP), an analog of ATP containing a photoreactive benzophenone moiety, was used as a probe of the ATP binding site of myosin subfragment 1 (SF1). The inactivation of SF1 NH+4-EDTA ATPase by the bifunctional thiol crosslinking system cobalt(II)/cobalt(III) phenanthroline complexes was enhanced by Bz2ATP to the same degree as by ATP. This treatment resulted in the stable trapping of Bz2ATP at the active site in nearly stoichiometric amounts in a manner exactly analogous to ATP (Wells, J.A., and Yount, R.G. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 4966-4970). Irradiation of SF1 containing trapped [3H]Bz2ATP gave approximately 50% covalent incorporation of the trapped nucleotide into the enzyme. Analysis of photolabeled SF1 by gel electrophoresis showed that all of the [3H]Bz2ATP was attached to the 95-kDa heavy chain fragment. No label was found in the light chains. Similar analysis of the same protein after limited trypsin treatment demonstrated that approximately 75% of the [3H]Bz2ATP was bound to the central 50-kDa peptide and its 75-kDa precursor from the heavy chain. The N-terminal 25-kDa tryptic peptide, shown to be photolabeled by other ATP analogs (Szilagyi, L., Balint, M., Sreter, F.A., and Gergely, J. (1979) Biochem. Biophys. Res. Commun. 87, 936-945; Okamoto, Y., and Yount, R.G. (1983) Biophys. J. 41, 298a), was not labeled (less than 1%) by Bz2ATP. These results demonstrate that portions of the 50 kDa-peptide of the heavy chain are within 6-7 A of the ATP binding site on SF1 and possibly contribute to nucleotide binding.  相似文献   

11.
M Burke  S Zaager  J Bliss 《Biochemistry》1987,26(5):1492-1496
The stability of myosin subfragment 1 (S1) to thermal denaturation has been followed by limited tryptic proteolysis. Digestions done during the thermal denaturation show that at temperatures at and above 37 degrees C there is a marked increase in the susceptibility of S1 to tryptic degradation, as evidenced by the loss of all bands corresponding to the normally trypsin-resistant fragments of 50, 27, and 21 kDa of the heavy chain and to the light chain. The enhanced digestion of S1 appears to be due to a general unfolding of all segments of S1, although the 50-kDa segment appears to unfold at a lower temperature than the remainder of the S1 structure. Digestions done after 30-min exposure to higher temperatures or after subsequent cooling to 25 degrees C show marked differences in the susceptibility of the S1 to trypsin. This suggests that, on cooling, a substantial portion of the S1, but not the 50-kDa segment, is capable of refolding to a state corresponding closely to that in the native S1. These data indicate that in terms of thermal denaturation the S1 behaves as though it is comprised of two domains--an unstable 50-kDa domain and a more stable domain comprised of the 27- and 21-kDa segments of the heavy chain interacting with the light chain, as proposed recently by Setton and Muhlrad [Setton, A., & Muhlrad, A. (1984) Arch. Biochem. Biophys. 235, 411-417]. The rates of thermal inactivation of the ATPase of S1 are found to correspond closely to the decay rates for the 50-kDa fragment, suggesting that this segment in S1 is closely associated with the ATPase function of the protein.  相似文献   

12.
The actin bundle within each microvillus of the intestinal brush border is tethered laterally to the membrane by spirally arranged bridges. These bridges are thought to be composed of a protein complex consisting of a 110-kD subunit and multiple molecules of bound calmodulin (CM). Recent studies indicate that this complex, termed 110K-CM, is myosin-like with respect to its actin binding and ATPase properties. In this study, possible structural similarity between the 110-kD subunit and myosin was examined using two sets of mAbs; one was generated against Acanthamoeba myosin II and the other against the 110-kD subunit of avian 110K-CM. The myosin II mAbs had been shown previously to be cross-reactive with skeletal muscle myosin, with the epitope(s) localized to the 50-kD tryptic fragment of the subfragment-1 (S1) domain. The 110K mAbs (CX 1-5) reacted with the 110-kD subunit as well as with the heavy chain of skeletal but not with that of smooth or brush border myosin. All five of these 110K mAbs reacted with the 25-kD, NH2-terminal tryptic fragment of chicken skeletal S1, which contains the ATP-binding site of myosin. Similar tryptic digestion of 110K-CM revealed that these five mAbs all reacted with a 36-kD fragment of 110K (as well as larger 90- and 54-kD fragments) which by photoaffinity labeling was shown to contain the ATP-binding site(s) of the 110K subunit. CM binding to these same tryptic digests of 110K-CM revealed that only the 90-kD fragment retained both ATP- and CM-binding domains. CM binding was observed to several tryptic fragments of 60, 40, 29, and 18 kD, none of which contain the myosin head epitopes. These results suggest structural similarity between the 110K and myosin S1, including those domains involved in ATP- and actin binding, and provide additional evidence that 110K-CM is a myosin. These studies also support the results of Coluccio and Bretscher (1988. J. Cell Biol. 106:367-373) that the calmodulin-binding site(s) and the myosin head region of the 110-kD subunit lie in discrete functional domains of the molecule.  相似文献   

13.
1. Presence of N-terminal peptide ("difference peptide") in alkali light chain 1 (A1) of fish fast skeletal myosin was examined by comparing two kinds of light chain-based myosin subfragment 1 (S1) isozymes from the yellowtail Seriola quinqueradiata. 2. On tryptic digestion, A1 was cleaved to a smaller fragment (mol. wt decrement by 2000) along with the cleavage of S1 heavy chain, while A2 was resistant to trypsin. Two-dimensional gel electrophoresis showed that A1 released a basic peptide by tryptic digestion. 3. Both S1 isozymes showed clear kinetic differences in actin-activated Mg-ATPase activity, suggesting a higher affinity of A1 for actin. Affinity of A2 for heavy chain was also estimated to be about 2-fold higher than that of A1, as judged by the model experiments in which rabbit S1 isozymes were hybridized with heterologous alkali light chains.  相似文献   

14.
Evidence is presented that, under conditions of 4.7 M NH4Cl and 10 mM Mg-ATP where no subunit dissociation can be detected by transport methods, a dynamic equilibrium exists in subfragment 1 between the associated and dissociated subunits. This is readily discerned by the formation of hybrid subfragment 1 species when a subfragment 1 isozyme is incubated with excess free light chains of the alternate isozyme. A similar process occurs with p-N,N'-phenylenedimaleimide (pPDM)-modified subfragment 1 containing [14C]Mg-ADP, but in this case, although extensive amounts of hybrid are formed, no loss of the trapped nucleotide is observed. Subunit scrambling without loss of the trapped nucleotide is apparent from incubating pPDM-SF1(A2)-[14C]Mg-ADP with unmodified SF1(A1) under similar conditions since the mixture subsequently contains SF1(A1), SF1(A2)h, pPDM-SF1(A1)h-[14C]Mg-ADP and pPDM-SF1(A2)-[14C]Mg-ADP. These data show that the nucleotide trapped in the presumptive active site does not escape during the dissociation-reassociation cycle, and suggest that the ATPase site resides solely on the heavy chain.  相似文献   

15.
To probe the molecular properties of the actin recognition site on the smooth muscle myosin heavy chain, the rigor complexes between skeletal F-actin and chicken gizzard myosin subfragments 1 (S1) were investigated by limited proteolysis and by chemical cross-linking with 1-ethyl-3-[3-(dimethyl-amino)propyl]carbodiimide. Earlier, these approaches were used to analyze the actin site on the skeletal muscle myosin heads [Mornet, D., Bertrand, R., Pantel, P., Audemard, E., & Kassab, R. (1981) Biochemistry 20, 2110-2120; Labbé, J.P., Mornet, D., Roseau, G., & Kassab, R. (1982) Biochemistry 21, 6897-6902]. In contrast to the case of the skeletal S1, the cleavage with trypsin or papain of the sensitive COOH-terminal 50K-26K junction of the head heavy chain had no effect on the actin-stimulated Mg2+-ATPase activity of the smooth S1. Moreover, actin binding had no significant influence on the proteolysis at this site whereas it abolished the scission of the skeletal S1 heavy chain. The COOH-terminal 26K segment of the smooth papain S1 heavy chain was converted by trypsin into a 25K peptide derivative, but it remained intact in the actin-S1 complex. A single actin monomer was cross-linked with the carbodiimide reagent to the intact 97K heavy chain of the smooth papain S1. Experiments performed on the complexes between F-actin and the fragmented S1 indicated that the site of cross-linking resides within the COOH-terminal 25K fragment of the S1 heavy chain. Thus, for both the striated and smooth muscle myosins, this region appears to be in contact with F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Acanthamoeba myosin IA is a globular protein composed of a 140-kDa heavy chain and a 17-kDa light chain. It expresses high actin-activated Mg2+-ATPase activity when one serine on the heavy chain is phosphorylated. We previously showed that chymotrypsin cleaves the heavy chain into a COOH-terminal 27-kDa peptide that can bind to F-actin but has no ATPase activity and a complex containing the NH2-terminal 112-kDa peptide and the light chain. The complex also binds F-actin and has full actin-activated Mg2+-ATPase activity when the regulatory site is phosphorylated. We have now localized the ATP binding site to within 27 kDa of the NH2 terminus and the regulatory phosphorylatable serine to a 20-kDa region between 38 and 58 kDa of the NH2 terminus. Under controlled conditions, trypsin cleaves the heavy chain at two sites, 38 and 112 kDa from the NH2 terminus, producing a COOH-terminal 27-kDa peptide similar to that produced by chymotrypsin and a complex consisting of an NH2-terminal kDa peptide, a central 74-kDa peptide, and the light chain. This complex is similar to the chymotryptic complex but for the cleavage which separates the 38- and 74-kDa peptides. The tryptic complex has full (K+, EDTA)-ATPase activity (the catalytic site is functional) and normal ATP-sensitive actin-binding properties. However, the actin-activated Mg2+-ATPase activity and the F-actin-binding characteristics of the tryptic complex are no longer sensitive to phosphorylation of the regulatory serine. Therefore, cleavage between the phosphorylation site and the ATP-binding site inhibits the effects of phosphorylation on actin binding and actin-activated Mg2+-ATPase activity without abolishing the interactions between the ATP- and actin-binding sites.  相似文献   

17.
K Sutoh 《Biochemistry》1987,26(24):7648-7654
The ATPase site of rabbit skeletal myosin was covalently labeled by an ADP analogue that carried a biotin moiety on its adenine ring and a photoreactive phenyl azide group on its ribose ring [Sutoh, K., Yamamoto, K., & Wakabayashi, T. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 212-216]. The ADP analogue was tightly trapped into the ATPase site in the presence of vanadate ions and then covalently cross-linked to the site by UV irradiation. The N-terminal 23,000-dalton tryptic fragment of the heavy chain was selectively labeled with the analogue. Further mapping of the labeled segment along the 23-kDa fragment was carried out by "end-label fingerprinting" which employed site-directed antibodies against both ends of the N-terminal heavy chain fragment. The mapping revealed that a hydrophobic segment of approximately 10 residues next to Trp-130, which was reported to be in proximity to the adenine ring of ADP bound to the ATPase site [Okamoto, Y., & Yount, R. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1575-1579], was the site of covalent labeling with the ADP analogue. The result indicates that the hydrophobic segment is close to the ribose ring of ADP bound to the ATPase site.  相似文献   

18.
Tryptic digestion of rabbit skeletal myofibrils at physiological ionic strength and pH results in cleavage of the myosin heavy chain at one site giving two bands (Mr = 200,000 and 26,000) on sodium dodecyl sulfate/polyacrylamide gels. Following addition of sodium pyrophosphate (to 1 mm) to dissociate the myosin heads from actin, tryptic proteolysis results in production of three bands, 160K2, 51K and 26K, with a 74K band appearing as a precursor of the 51K and 26K species. Under these conditions, there is insignificant cleavage of heavy chain to the heavy and light meromyosins. Trypsin-digested myofibrils yield the same amount of rod as native myofibrils when digested with papain. These results indicate that actin blocks tryptic cleavage of the myosin heavy chain at a site 74K from the N terminus. From measurements of the amount of 51K species formed by digestion of rigor fibers at various sarcomere lengths, we estimate that at least 95% of the myosin heads are bound to actin at 100% overlap of thick and thin filaments. Hence all myosin molecules can bind to actin, and consequently both heads of a myosin molecule can interact simultaneously with actin filaments under rigor conditions.  相似文献   

19.
The actin-dependent ATPase activity of myosin is retained in the separated heads (S1) which contain the NH2-terminal 95-kDa heavy chain fragment and one or two light chains. The S1 heavy chain can be degraded further by limited trypsin treatment into characteristic 25-, 50-, and 20-kDa peptides, in this order from the NH2-terminal end. The 20-kDa peptide contains an actin-binding site and SH1 and SH2, two thiols whose modification dramatically affects ATPase activity. By treating myosin filaments with trypsin at 4 degrees C in the presence of 2 mM MgCl2, we have now obtained preferential cleavage at the 50-20-kDa heavy chain site without any cleavage at the head-rod junction and hinge region in the rod. Incubation of these trypsinized filaments at 37 degrees C in the presence of MgATP released a new S1 fraction which lacked the COOH-terminal 20-kDa heavy chain peptide region. This fraction, termed S1'(75K), has more than 50% of the actin-activated Mg2+-ATPase activity of S1 and the characteristic Ca2+-ATPase and K+-EDTA ATPase activities of myosin. These results show that SH1 and SH2 are not essential for ATPase activity and that binding of actin to the 20-kDa region is not essential for the enhancement of the Mg2+-ATPase activity.  相似文献   

20.
Probing myosin head structure with monoclonal antibodies   总被引:12,自引:0,他引:12  
Monoclonal antibodies that react with defined regions of the heavy and light chains of chicken skeletal muscle myosin have been used to provide a correlation between the primary and the tertiary structures of the head. Electron microscopy of rotary shadowed antibody-myosin complexes shows that the sites for three epitopes in the 25,000 Mr tryptic fragment (25k) of subfragment-1, including one within 4000 Mr of the amino terminus of the myosin heavy chain, are clustered 145(+/- 20) A from the head-rod junction. An epitope in the 50,000 Mr fragment maps even further out on the head. These antibodies bind to the head in several orientations, suggesting that each of the heads can rotate can rotate 180 degrees about the head-rod junction. The epitopes are accessible on subfragment-1 bound to actin when they were probed with Fab fragments; therefore, none of these heavy chain sites is is on the contact surface between the head and actin. Two of the anti-25k antibodies affect the K+-EDTA-and Ca2+-ATPase activities of myosin in a manner that mimics the effect on activity of the modification of the reactive thiol, SH-1. These two antibodies also inhibit the actin-activated ATPase non-competitively with respect to actin. None of the other eight antibodies tested had any marked effect on activity. A monoclonal antibody that reacts with an epitope in the amino-terminal third of myosin light chain 2 maps close to the head-rod junction. A polyclonal antibody specific for the amino terminus of light chain 3 binds further up in the "neck region" of the head, indicating that these portions of the two classes of light chains are located at different sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号